

Computer Science Department

Technical Report
Number: NU-CS-2025-37

September, 2025

TRUSTCHECKPOINTS: Time Betrays Malware for Unconditional Software
Root of Trust

Friedrich Doku, Peter Dinda

Abstract

Modern IoT and embedded platforms must start execution from a known trusted state to thwart
malware, ensure secure firmware updates, and protect critical infrastructure. Current approaches
to establish a root of trust depend on secret keys and/or specialized secure hardware, which
drives up costs, may involve third parties, adds operational complexity, and relies on
assumptions about an attacker’s computational power. In contrast, TRUSTCHECKPOINTS is
the first system to establish an unconditional software root of trust based on a formal model—
without relying on secrets or trusted hardware. Developers capture a full-system checkpoint and
later roll back to it and prove this to an external verifier. The verifier issues timing-constrained,
randomized k-independent polynomial challenges (via Horner’s rule) that repeatedly scan
the fast on-chip memory in randomized passes. When malicious code attempts to persist, it must
swap into slower, unchecked off-chip storage, causing a detectable timing delay.
 Our prototype for a commodity ARM Cortex-A53-based platform validates 192 KB of
SRAM in ∼10 s using 500 passes, sufficient to detect single-instruction persistent malware. The
prototype then seamlessly extends trust to DRAM. Two modes—fast SRAM-bootstrap and

comprehensive full-memory scan—allow trade-offs between speed and coverage, demonstrating
reliable malware detection on unmodified hardware.

This effort was partially supported by the United States National Science Foundation (NSF)
under awards CNS-2211315, CCF-2119069, and CNS-2211508.

Keywords

root of trust, embedded systems, IoT, unconditional

TRUSTCHECKPOINTS: Time Betrays Malware for Unconditional Software Root of
Trust

Friedrich Doku
McCormick School of Engineering

Northwestern University
Evanston, Illinois 60208

Email: friedy@u.northwestern.edu

Peter Dinda
McCormick School of Engineering

Northwestern University
Evanston, Illinois 60208

Email: pdinda@northwestern.edu

Abstract—Modern IoT and embedded platforms must start ex-
ecution from a known trusted state to thwart malware, ensure
secure firmware updates, and protect critical infrastructure.
Current approaches to establish a root of trust depend on
secret keys and/or specialized secure hardware, which drives up
costs, may involve third parties, adds operational complexity,
and relies on assumptions about an attacker’s computational
power. In contrast, TRUSTCHECKPOINTS is the first system
to establish an unconditional software root of trust based
on a formal model—without relying on secrets or trusted
hardware. Developers capture a full-system checkpoint and
later roll back to it and prove this to an external verifier. The
verifier issues timing-constrained, randomized k-independent
polynomial challenges (via Horner’s rule) that repeatedly scan
the fast on-chip memory in randomized passes. When malicious
code attempts to persist, it must swap into slower, unchecked
off-chip storage, causing a detectable timing delay.

Our prototype for a commodity ARM Cortex-A53-based
platform validates 192 KB of SRAM in →10 s using 500
passes, sufficient to detect single-instruction persistent mal-
ware. The prototype then seamlessly extends trust to DRAM.
Two modes—fast SRAM-bootstrap and comprehensive full-
memory scan—allow trade-offs between speed and coverage,
demonstrating reliable malware detection on unmodified hard-
ware.

1. Introduction

As embedded systems and Internet of Things (IoT)
devices proliferate across critical infrastructure, industrial
automation, medical instrumentation, and consumer elec-
tronics, ensuring their integrity has never been more crucial.
These devices often operate unattended, control physical
processes, and handle sensitive data, making them com-
pelling targets whose compromise can lead to severe safety,
privacy, or financial consequences.

A root of trust ensures that devices begin execution from
a known-good state, free from persistent malware. It is the
foundation upon which all subsequent security guarantees
rest: if the root is compromised, no downstream software can
be trusted. Establishing this root is critical for secure boot,

firmware validation, and continuous integrity monitoring in
distributed deployments [1], [2].

Existing approaches to establish a root of trust gener-
ally depend on (1) public-key cryptography and secure key
storage, (2) specialized hardware modules such as TPMs or
HSMs, or (3) complexity assumptions (e.g., RSA or discrete
logarithm hardness) [3], [4], [5], [6]. All three dependencies
pose challenges in low-cost, resource-constrained environ-
ments and may be undermined by future quantum adver-
saries [7]. Furthermore, existing software-based verification
schemes can check code integrity but cannot detect malware
hidden in system state [8].

More fundamentally, these cryptographic roots of trust
suffer from an irreversibility problem: once secrets are com-
promised, there exists no cryptographically sound method
to determine whether a device remains infected. This cre-
ates a fundamental asymmetry where defenders must pro-
tect secrets indefinitely, while attackers need succeed only
once. Current approaches cannot answer the critical post-
compromise question: “Is this device still compromised?”

This inability to verify cleanliness after potential com-
promise has severe practical consequences. Organizations
facing sophisticated adversaries must treat any device with
potentially leaked credentials as permanently untrusted,
leading to costly hardware replacement cycles. Worse, ad-
vanced persistent threats can maintain presence even through
credential rotation, as verification schemes cannot detect
malware residing in system state rather than code.

We observe that while cryptographic protocols excel at
preventing unauthorized access, they fundamentally cannot
detect unauthorized presence once access is obtained. This
limitation stems from Shannon’s perfect secrecy: an ad-
versary with complete knowledge of all secrets becomes
cryptographically indistinguishable from legitimate users.
Breaking this symmetry requires introducing an asymmetry
the adversary cannot replicate—not in computational power,
but in physical constraints.

TRUSTCHECKPOINTS exploits a simple physical reality:
computation takes time, and this time cannot be hidden.
By forcing devices to perform carefully crafted computa-
tions from known checkpoints while precisely measuring
execution timing, we can detect any active malware through

unavoidable timing perturbations. Unlike cryptographic ap-
proaches that fail catastrophically upon key compromise,
TRUSTCHECKPOINTS’s timing-based verification degrades
gracefully—an adversary who steals keys gains no advan-
tage in hiding their computational footprint.

Specifically, TRUSTCHECKPOINTS establishes a
physically-grounded root of trust by restricting device state
to verified checkpoints and measuring the precise timing of
randomized polynomial computations. Any deviation from
expected timing behavior—whether from resident malware,
rootkits, or hardware implants—becomes detectable with
probability approaching certainty as measurements increase.
This provides, for the first time, a mechanism to verify
device cleanliness that remains effective even against
adversaries with complete cryptographic knowledge.

TRUSTCHECKPOINTS builds on the theoretical foun-
dation established by Gligor et al. [8], [9], [10], taking
their theoretical approach and applying it on real com-
modity hardware. Our current prototype represents the first
working implementation of unconditional software root of
trust, bridging the gap between theory and practice. Our
experience building TRUSTCHECKPOINTS reveals both the
challenges and opportunities in making timing-based verifi-
cation practical, providing concrete insights for future sys-
tems that could achieve better performance through lower-
jitter channels or hardware-assisted timing isolation.

The heart of TRUSTCHECKPOINTS is a k-independent
randomized-polynomial evaluation via Horner’s rule over
the entire checkpointed memory. By repeatedly scanning
the fast on-chip memory in multiple randomized passes, any
attacker attempting to hide malicious code must swap it to
slower off-chip storage (e.g., MMC or SPI flash). The accu-
mulated swap time incurs a measurable latency penalty de-
tectable by our microsecond-resolution timing mechanism.
We can thus detect when malware persists, preventing estab-
lishment of trusted state. Conversely, successful checkpoint
restoration within the expected time bound guarantees that
the system has returned to a malware-free state, establishing
our software root of trust.

Our contributions are as follows:

• We present the TRUSTCHECKPOINTS methodology
(§3), the first truly unconditional mechanism for
establishing software root of trust that leverages
k-independent randomized polynomials to confine
execution to a small set of trusted memory snapshots
and verify malware-free rollback, without relying on
stored secrets or specialized hardware.

• We describe the design and implementation of
the TRUSTCHECKPOINTS prototype for commodity
ARM hardware (§4). It provides a simple user-
level API for capturing checkpoints and verifying
malware-free rollback to establish software root of
trust.

• We provide detailed implementation guidance to
help future system designers avoid pitfalls when
building unconditional verification systems on their
target platforms (§5).

• We evaluate our prototype using the minimum pos-
sible persistent malware, a single instruction. Our
prototype can detect this attack with a near zero
false negative rate, while only incurring a tiny false
positive rate when no attack exists.

Our results demonstrate that TRUSTCHECKPOINTS, without
relying on cryptographic keys or trusted hardware, can
reliably detect an injected payload that consists of just a
single instruction. Our design and software will be made
available on publication of this paper.

2. Background and Related Work

Establishing a root of trust has become fundamental
to system security, ensuring devices begin execution from
a known-good state free from persistent malware. This is
especially vital in the Internet of Things (IoT), where fleets
of resource-constrained embedded devices face adversaries
with widely varying capabilities. The root of trust forms the
foundation upon which all security guarantees are built—if
compromised, no downstream software can be trusted.

Traditional approaches to establishing root of trust rely
on three main strategies: (1) immutable hardware roots such
as mask ROM or one-time programmable memory that can-
not be modified by attackers, (2) cryptographic mechanisms
using secret keys stored in protected hardware enclaves, or
(3) specialized trusted hardware modules like TPMs, HSMs,
or TEEs that provide isolated execution environments. While
these approaches have seen substantial adoption and stan-
dardization (e.g., in Intel SGX [3]), they pose challenges for
devices with extremely limited computational and memory
resources.

Beyond establishing the initial root of trust, a critical
challenge remains: verifying that a device has successfully
returned to its trusted state after potential compromise. At-
testation protocols have evolved to address this verification
challenge, enabling a trusted verifier to assess whether a
device has rolled back to a clean state. However, existing
attestation schemes inherit the same dependencies as their
underlying root of trust mechanisms, requiring either crypto-
graphic secrets, trusted hardware, or computational hardness
assumptions that may be undermined by future quantum
adversaries.

2.1. Hardware-Based Attestation

Early attestation protocols were primarily hardware-
based, building on Trusted Platform Modules (TPMs) and
secure enclaves like Intel SGX or ARM TrustZone [3],
[5], [11]. These solutions can provide strong roots of trust
but require developers to spend substantial time porting
their applications and device drivers to them [12], [13],
[14]. Furthermore, hardware-centric methods often introduce
additional cost, complexity, and reliance on external parties
to provision secrets at manufacturing time. Finally, hard-
ware vulnerabilities [15] are both extremely challenging to
address after the fact and an obvious target for attackers.

2.2. Software-Only Attestation

Software-only attestation schemes such as Pioneer and
SWATT [16], [17] avoided dedicated security hardware by
embedding timing checks and self-checksum loops directly
into the prover’s code. These methods embed a self-checking
loop that reads memory in a pseudo-random order and mea-
sures execution time to detect modifications. While practical
on legacy embedded platforms, these approaches remain
largely heuristic: they offer no formal lower bound on how
much adversarial work can be hidden, and they can be
defeated by local adversaries who replay stale responses, re-
order computations, or exploit predictable memory regions.

Armknecht et al. formalized this space in a generic
framework, identifying precise conditions (e.g., memory
incompressibility, oracle-modeled primitives, time bounds)
for provable security [18], but their analysis stops short of
a concrete, keyless implementation on real hardware.

2.3. Hybrid and Hypervisor-Based Approaches

Hybrid attestation protocols, which combine minimal
hardware trust anchors with lightweight software checks,
represent a middle ground. Projects like SMART and
VRASED [6], [19] have shown that by using a small hard-
ware root of trust and formally verified code, it’s possible
to provide strong security guarantees even on resource-
limited devices. This is further exemplified in protocols like
SeED [20] or ERASMUS [21], which use periodic self-
measurement and loosely synchronized clocks to achieve
efficient, scalable attestation without expensive hardware
dependencies.

In cloud and enterprise environments, hypervisor-
assisted schemes have emerged. XSWAT [22] adapts timing-
based attestation to cloud hypervisors by integrating Xen
kernel modules, Intel’s Last Branch Record, and SHA-1
checksums, eliminating the need for TPMs while defend-
ing against time-of-check to time-of-use (TOCTOU) and
multi-core races. Checkmate [23] takes a Windows-centric
approach, measuring end-to-end network RTTs via an NDIS
intermediate driver to detect code-integrity violations over
enterprise networks with minimal overhead. These systems
achieve impressive performance in their domains but still
depend on complex software stacks, public-key infrastruc-
ture, or centralized baselining.

2.4. Memory-Based Detection Schemes

Jakobsson and Johansson’s “memory-printing” ap-
proach [24] detects active malware by exploiting the timing
gap between RAM and slower storage like flash, relying on
the assumption that malware incurs detectable delays when
accessing off-chip memory. However, it offers only heuristic
guarantees and lacks formal bounds on adversarial effort or
detection confidence.

2.5. Unconditional Security

Unconditional security requires no on-device secrets,
trusted hardware modules, or special instructions (e.g.,
TPMs, ROMs, SGX), and does not assume any bound on the
adversary’s computational power [8]. The external verifier
stores no secrets, executes no code on the device being
challenged, and confers no additional capabilities.

This stands in contrast to conditional security ap-
proaches that rely on unproven computational assumptions
(e.g., factoring or discrete logarithm hardness), trusted third
parties, or pre-shared cryptographic material. Unconditional
security solutions offer several fundamental advantages over
conditional ones:

• Independence from third parties: They require no
security mechanisms, protocols, or external parties
whose trustworthiness is uncertain, such as secret
keys installed in hardware by manufacturers.

• Provable adversary limitations: They limit any
adversary’s chance of success to provably low proba-
bilities determined by the defender, giving defenders
undeniable mathematical advantage.

• Computational independence: They remain secure
regardless of the adversary’s computing power or
technology, including quantum computers.

Unconditional security systems derive their guarantees from
physical properties rather than computational assumptions;
the verifier needs only the physical device specifications,
such as memory speeds and CPU characteristics. For em-
bedded and IoT devices, this eliminates dependence on
heavyweight cryptographic libraries, complex key manage-
ment infrastructure, or trust in hardware manufacturers’ key
provisioning processes.

At its core, unconditional security transforms the trust
model from computationally “hard-but-not-impossible” to
“provably impossible”. Security depends solely on measur-
able physical phenomena, such as memory access timing,
hardware randomness sources, or communication channel
properties rather than unproven mathematical conjectures
about computational difficulty.

Gligor and Woo’s seminal work formalizes this ap-
proach by defining a concrete Word Random Access Ma-
chine (cWRAM) model and introducing k-independent
randomized-polynomial primitives with rigorous space–time
optimality guarantees [8]. Their theoretical framework
proves that any adversarial deviation from optimal polyno-
mial evaluation must incur detectable additional work, but
stops short of demonstrating a concrete system.

TRUSTCHECKPOINTS bridges this theory-practice gap
by realizing unconditional security on commodity hardware.
Using only a source of physical randomness (for polynomial
coefficients) and the externally measurable time required
to complete the challenge, we demonstrate that uncondi-
tional security is achievable, providing information-theoretic
guarantees without cryptographic assumptions, pre-shared
secrets, or trusted hardware vendors.

Symbol Meaning
v = (v0, v1, . . . , vd) Memory content being challenged
si Polynomial coefficients
r0, r1, . . . , rk→1 Random values
x → Zp Random evaluation point
ω Permutation
↑ Bitwise XOR operation

Figure 1. Symbols used in this paper and their meanings.

2.6. Randomized Polynomials: Foundation and Se-
curity Properties

In the remainder of Section 2.6 we quote Gligor [8].
TRUSTCHECKPOINTS employs randomized polynomials as
its core cryptographic primitive for establishing a software
root of trust. These polynomials provide provable security
guarantees against adversarial manipulation. Our paper uses
a range of symbols starting from this point. Figure 1 presents
a guide.

2.6.1. Mathematical Definition. A randomized polynomial
Hd,k(·) of degree d over the finite field Zp is defined as:

Hd,k(v) =
d∑

i=0

(vi ↑ si)↓ xi (mod p) (1)

where:

• v = (v0, v1, . . . , vd) represents the memory content
being challenged

• si =
∑k→1

j=0 rj↓(i+1)j (mod p) are the polynomial
coefficients

• r0, r1, . . . , rk→1 are k random values chosen uni-
formly from Zp

• x → Zp is a random evaluation point
• ↑ denotes the bitwise XOR operation

2.6.2. Key Security Properties.
k-wise Independence. The coefficients si exhibit k-

wise independence, meaning any subset of k coefficients
appears uniformly random and independent. This property
ensures that an adversary cannot predict coefficient values
even with partial knowledge of up to k ↔ 1 coefficients.
Formally:

Theorem 1 (k-wise Independence). For any distinct indices
i1, i2, . . . , ik and any values a1, a2, . . . , ak → Zp:

Pr[si1 = a1 ↗ si2 = a2 ↗ · · · ↗ sik = ak] =
1

pk

This independence prevents an adversary from using
knowledge of some memory locations to predict the poly-
nomial’s behavior at other locations.

Second Pre-image Resistance. The randomized poly-
nomial construction provides strong collision resistance
properties:

Theorem 2 (Collision Resistance). For any x → Zp and
y ↘= x:

Pr[Hd,k(y) = Hd,k(x)] ≃
1

p↔ 1

This bound ensures that finding two different memory
configurations that produce the same result is computation-
ally infeasible for large p.

Space-Time Optimality. The randomized polyno-
mial Hd,k(·) achieves provable space-time optimality in
the cWRAM model, which captures realistic instruction-
level execution and memory constraints. It closely reflects
real hardware by incorporating a fixed word size, general-
purpose instruction sets with multiple addressing modes,
and support for I/O operations, caches, virtual memory, and
multiprocessors. Unlike idealized models, cWRAM captures
the concrete instruction-level and memory-access behavior
of real systems [8].

Theorem 3 (Concrete Bounds in cWRAM). Any adversar-
ial evaluation of Hd,k(·) that returns a correct result must
use:

• At least k + 22 words of memory, and
• At least (6k ↔ 4)↓ 6d clock cycles,

except with probability at most 3
p .

Horner’s rule is used to establish concrete lower bounds
on the work required to evaluate a polynomial. In infi-
nite fields (like the real numbers), it has been proven that
Horner’s rule is uniquely optimal, meaning no other method
can use fewer basic operations (addition, subtraction, mul-
tiplication, or division) [25]. Any correct algorithm for
evaluating a general polynomial must perform at least as
much arithmetic as Horner’s rule does.

While this optimality does not hold in general for finite
fields [26], where alternative strategies may reduce cost by
exploiting algebraic structure, the cWRAM model restores
Horner’s unique optimality by simultaneously minimizing
both time and space. In this model, every instruction and
memory access is explicitly accounted for, and any deviation
from Horner’s structure incurs a measurable cost in either
execution time or memory footprint. This makes Horner’s
rule not just efficient, but provably minimal within the
cWRAM framework.

These bounds were derived analytically under the
cWRAM model by modeling every instruction and memory
access involved in the Horner-rule evaluation of Hd,k(·).
While these bounds are tight and formally proven in the
cWRAM setting, our goal is to assess how well these guar-
antees hold on real hardware, where unmodeled effects, such
as microarchitectural behavior, timing jitter, and physical
variability can challenge assumptions made in abstract mod-
els. Understanding the correspondence between theoretical
bounds and real-world execution is critical for establishing
unconditional software root of trust through timing-based
verification.

DUT Verifier

T0

T1

ΔT = T1 - T0

Baseline

Time
C

ou
nt

𝑥, r0, r1, . . . , rk-1,
π

MultiPass
output

DUT calls replay 2 Verifier sends
challenge

DUT sends
result

3

4 Verifier checks
time and result

5 Accept if valid & timely,
else re-challenge

1

DRAM

SRAM

Checkpoint

MultiPass

Figure 2. TRUSTCHECKPOINTS general architecture.

TIME

REPLAY

SAFE SAFE

REPLAY REPLAY FAILED
DETECTED

 ATTACKED ATTACKED

Figure 3. This timeline illustrates how a device can recover from malware
by replaying previously recorded safe checkpoints. At each “REPLAY”
point, the system restores a snapshot of CPU registers, on-chip SRAM,
and selected DRAM regions, returning to a previously verified safe state.

3. Methodology

We begin by presenting the overall methodology and
system architecture, followed by a detailed breakdown of
each component of TRUSTCHECKPOINTS. Figure 2 offers
a visual overview, while Figure 3 illustrates how checkpoints
are used to recover the system during execution.

3.1. Overview

TRUSTCHECKPOINTS consists of three principal com-
ponents: the developer interface, the external verifier, and
the device under test (DUT). During normal operation,
developers insert lightweight API calls into their programs
to record and restore trusted system states:

• checkpoint_record() captures a snapshot of
CPU registers, on-chip SRAM, and selected regions
of DRAM, and stores it in a reserved memory region

• checkpoint_replay() restores the device into
a previously recorded checkpoint, overwriting any
intervening modifications.

At challenge time, a challenge processor generates a
fresh randomized-polynomial challenge and sends it over
a secure channel to the external verifier. The external ver-
ifier is a microcontroller connected over a low-variability
link. It relays the challenge to the DUT, signals the DUT
to restore the checkpoint, and then begins high-precision
timestamping. The DUT executes the polynomial evaluation
by scanning the selected memory hierarchy (SRAM only or
both SRAM and DRAM) including CPU registers in mul-
tiple randomized passes, including it’s challenge program.
On completion, the DUT emits the result value, which the
microcontroller immediately timestamps and forwards back
to the challenge processor.

The challenge processor validates the final polynomial
result by comparing its execution time against a known
baseline. Malware that swaps to slower memory to evade
detection introduces measurable latency deviations.

By building on keyless, information-theoretic primitives
and an out-of-band timing channel, this architecture delivers
end-to-end guarantees without relying on stored secrets,
trusted hardware modules, or complexity assumptions. The
two provided modes—SRAM-only and full-memory—allow
deployers to balance challenge scope against runtime over-
head, making TRUSTCHECKPOINTS suitable for a wide
range of embedded platforms.

3.2. Threat Model and Trust Assumptions

In our threat model, the verifier seeks to establish that
a device it physically possesses, such as an embedded sys-
tem, IoT node, or controller, is free from malware without
trusting any software running on it. TRUSTCHECKPOINTS
achieves this without on-device secrets or specialized on-
chip secure hardware (e.g., TPM/TEE/HSM), but does rely
on specific trust assumptions detailed below.

Trust Assumptions.

• External Verifier: A trusted external microcon-
troller connected via a bounded-jitter link performs
all timing measurements and challenge generation.
This verifier and its physical connection are assumed
tamper-proof.

• Timing Stability: The device must guarantee
bounded timing noise, achieved through fixed clock
frequencies, disabled DVFS, and quiesced peripher-
als during the challenge.

• DMA Containment: TRUSTCHECKPOINTS re-
mains secure only on systems where all DMA-
capable peripherals are either fully trusted or can be
verifiably disabled. We outline three defense strate-
gies to enforce this requirement (see Section 5.7).

• Baseline Profiling: During a trusted setup phase,
the verifier empirically profiles the device’s timing
behavior to establish a baseline for detecting devia-
tions.

• Public Checkpoints: The memory snapshots
(checkpoints) themselves are public information re-
quiring no confidentiality.

Under these assumptions, our security is unconditional
with respect to attacker computational power.

Adversary Capabilities.

• Persistent Malware: Implant malware that survives
power cycles, secure/trusted boot, and firmware re-
flashing.

• System Control: Modify the system state at
any software layer—firmware, kernel, or applica-
tion—but not hardware.

• Adaptive Code Modification: Alter challenge-
processing code on-the-fly, e.g., to shortcut or replay
portions of the polynomial evaluation.

• I/O Channel Access: Read from and write to the
DUT’s link, attempting to spoof or delay times-
tamped messages.

• Baseline Awareness: The adversary possesses the
device specifications and knows the expected execu-
tion time of the challenge under normal conditions.

Adversary Limitations.
• External Components: Cannot tamper with the

external verifier microcontroller or compromise the
bounded-jitter serial link.

• Immutable Hardware: Cannot modify the device’s
physical hardware—only its firmware/software.

• Peripheral Control: Cannot prevent hardware-
enforced peripheral resets or DMA quiescence when
properly configured.

• Randomness Protection: Cannot predict random
nonces issued by the external verifier.

• Denial of Service: We do not defend against pure
DoS attacks (power-cycling, link-jamming, etc.).

3.3. Checkpointing

Before any field device can be challenged, the owner
must first generate and distribute a trusted checkpoint. This
provisioning consists of two main steps: baseline calibration
& checkpoint capture on a trusted reference device, and
replay on each target device.

A. Baseline Calibration & Checkpoint Capture: On
a secure reference device (e.g. in the factory or lab), the
owner will:

1) Configure Known-Good State. Boot the device
into the desired firmware/OS configuration (hyper-
visor, kernel, applications), disable non-essential
services, and verify correct operation.

2) Calibrate Timing. Execute the MULTIPASS
randomized-polynomial routine (see Algorithm §1)
repeatedly (e.g. 50–100 trials). The external verifier
MCU records start/stop timestamps to capture the
empirical distribution and serial correlation.

3) Record Trusted Checkpoint. Invoke
checkpoint_record();

which snapshots:
• CPU general-purpose registers and control

state (e.g. hypervisor context),
• the entire on-chip SRAM image,
• only the selected DRAM memory of interest,
• any other critical data (device-tree blobs,

kernel image, application binaries).
The snapshot is stored in a reserved part of DRAM.
The checkpoint data can be read from anywhere as
long as it is loaded into DRAM.

4) Export & Distribute. Package the checkpoint im-
age together with its baseline data, and distribute it
to each DUT with the same device specifications.
The checkpoint image can be made public. The
connectivity between the DUT and the verifier can
be any channel as long as the channel has low
variability (jitter). If the link’s timing fluctuations
are too large, it becomes difficult to distinguish
between natural transmission delays and adversarial
behavior.

B. Stateless Restoration on Target DUTs: Each
Device-under-test (DUT) establishes its software root of
trust by loading the owner-provided checkpoint pack-
age into a reserved part of DRAM and invokes
checkpoint_replay(), which restores CPU registers,
on-chip SRAM, and the designated DRAM regions to their
checkpointed values. It also resets all other volatile state
(including caches and peripherals) back to the trusted check-
point. Once checkpoint_replay() returns, the DUT
retains no memory of any execution preceding the check-
point and is immediately ready to prove successful rollback
through the timing challenge.

3.4. Multi-Pass Evaluation Protocol

TRUSTCHECKPOINTS uses multiple passes of the
Horner evaluation of k-independent randomized polynomi-
als to strengthen detection, forcing adversaries to swap out
their added code on each pass, incurring cumulative delays
that are externally observable.

Algorithm 1 MULTIPASS Randomized Polynomial Evalua-
tion
Require: Memory snapshot v[0 . . . d↔ 1],

1: Random values r0, r1, . . . , rk→1,
2: field element x → Zp,
3: prime modulus p,
4: permutation seed seed ,
5: number of passes P
6:

Ensure: Final accumulator result
7: d ⇐ length(v)
8: ω ⇐ pseudorandom permutation(d, seed)
9: result ⇐ 0

10: for pass ⇐ 0 to P ↔ 1 do
11: for i ⇐ 0 to d↔ 1 do
12: idx ⇐ ω[d↔ 1↔ i]
13: coe! idx ⇐ pass · d+ idx
14: si ⇐

∑k→1
j=0 rj ↓ (coe! idx + 1)j mod p

15: ε ⇐ v[idx]↑ si
16: result ⇐ (result ↓ x+ ε) mod p
17: end for
18: end for
19: return result

MULTIPASS evaluates a k-independent randomized
polynomial over a memory snapshot using Horner’s method,

repeated across multiple passes to amplify detection robust-
ness. The input v[i] refers to the ith memory word and is
accessed in a fixed pseudorandom order determined by a
permutation ω.

Critically, the coefficients are computed on-demand
rather than stored in memory. For each pass p and index
i, a unique coefficient si is computed on the fly using the
k random values r0, r1, . . . , rk→1 provided by the verifier.
Following the formula from Section 2.6.1, each coefficient
is derived as si =

∑k→1
j=0 rj ↓ (i+ 1)j mod p, immediately

used in the XOR operation, and then discarded. At no
point is an array of coefficients materialized in memory.
The only persistent state consists of the k random values
and loop variables, all of which fit entirely in registers.
This design is crucial for security: the registers are fully
occupied during execution, and any attempt by an attacker
to commandeer them would require additional instructions
or memory traffic, introducing detectable delays.

The accumulator is updated via Horner’s rule using a
shared field element x → Zp, with all computations modulo
a prime p. Each pass uses a distinct coefficient index range
(determined by pass · d + idx), ensuring that coefficients
are never reused across passes and preventing adversarial
alignment of memory layouts.

If an attacker wants to hide malware, they must evict
some legitimate memory content to make room. Since the
challenge runs multiple passes over memory in random
order, the attacker faces an impossible dilemma:

• To persist across passes, their malware must stay in
the checked memory

• But to compute the correct result, they need the
original code they evicted

• So they must constantly swap: original code out,
malware in; then malware out, original code back
in, etc.

Each swap requires accessing unchecked, slower off-
chip memory (DRAM, flash, etc.), adding measurable de-
lays. Over hundreds of passes, these tiny delays accumulate
into a timing difference our external verifier can detect. The
attacker cannot avoid this, they need both their malware and
the original code, but only have space for one at a time. Our
space bound doesn’t have room for malware.

3.4.1. Critical Design Features. A critical challenge in
memory verification arises when adversaries exploit pre-
dictable or highly compressible regions, e.g., zero-filled
pages or repeated patterns, to shortcut genuine memory
fetches by replaying precomputed values. An adversary who
knows that certain regions are trivial or compressible might
skip the actual memory reads during the challenge and
return the correct final result in less time than the honest
DUT. To defeat such compression-based evasion strategies,
MULTIPASS accesses memory in a pseudorandom order,
ensuring that every word must be fetched from its actual
physical location.

This gives us:

• Unpredictability: Without the seed, guessing the
next address has probability at most 1/(d ↔ i) at
step i.

• Uniform coverage: Every word is accessed exactly
once, so no region can be omitted.

We do not perform on-the-fly histogramming or statis-
tical correction in the protocol itself. Instead, if deployers
detect low-entropy regions in their checkpointed memory
(e.g., via simple histogram or compression-ratio measure-
ments), they can trivially inject randomness by filling unused
memory with random values.

Our randomized permutation forces adversaries to access
memory in an unpredictable order. While an adversary might
compress sequential zero-filled pages offline, they cannot
predict which memory word will be requested next during
the challenge. Each access requires fetching the actual data
from its physical location. Compression only helps if you
know the access pattern in advance. Our permutation de-
pends on the verifier’s random seed, which is unknown to
the adversary in advance.

By combining MULTIPASS (Algorithm 1) with a
one-time entropy check, TRUSTCHECKPOINTS deliv-
ers a lightweight, deployer-driven defense against all
compression-based optimizations, while still preserving our
core guarantee.

3.5. Space–Time Optimality and Forced Storage
Swaps

A key pillar of our design is the space–time optimality
of Horner’s-rule evaluation on a fixed memory footprint.
In the cWRAM model, Gligor and Woo prove that any
program which simultaneously minimizes execution time
(one multiply–add per coefficient) and working memory (ex-
actly k+1 memory words for a degree-k polynomial) must
conform to the unique Horner-rule layout [8]. Our honest
DUT implementation fits exactly within on-chip SRAM and
exhibits runtime consistent with the expected performance
of Horner-based polynomial evaluation.

Adversarial Space Violations. Suppose an attacker at-
tempts to inject malicious code or data alongside the Horner
evaluator. Let SSRAM denote the total on-chip SRAM re-
served for evaluation and SM denote the malware payload.
Any extra instructions or payload exceeding SSRAM cannot
fit in fast memory and must be spilled into slower storage
(off-chip DRAM or secondary flash). Formally, if the ad-
versary’s memory footprint is

Sadv = SSRAM + SM,

then SM > 0 bytes must reside in a slower tier with band-
width Bslow ⇒ BSRAM. Each pass through the checkpointed
region will therefore incur an additional time penalty

!T ⇑ SM

Bslow
,

which accumulates over the P randomized passes.

Detectable Timing Penalty. Each off-chip memory access
incurs a significant latency penalty compared to on-chip
SRAM. Over P passes, even a small amount of swapped
data SM accumulates into a total delay:

P ↓!T = P ↓ SM

Bslow
> ϑnoise,

where ϑnoise is the timing noise floor and Bslow is the
bandwidth of the slower memory. Thus, any violation of
the space bound SSRAM necessarily produces a detectable
timing anomaly.

Implications for Attackers. An adversary cannot both (a)
execute extra malicious instructions or store additional data
and (b) remain entirely within SSRAM. Any attempt to re-
main stealthy will require off-chip fetches. In every case,
exceeding the on-chip space budget forces storage swaps
that our MULTIPASS timing measurement will expose. This
space–time enforcement transforms our challenge into a
provably unconditional security check: attackers who violate
the minimal space–time bounds of Horner’s evaluation are
caught by latency penalties that cannot be masked.

Dynamic Memory Access: By XOR’ing each accessed
word v[i] with its corresponding coefficient s[i] before
Horner-rule accumulation, we prevent trivial memory re-
gions from being “skipped” or optimized away. Every word
contributes a nontrivial term, forcing the DUT to execute the
same sequence of loads and arithmetic operations on every
pass.

Together, these design elements ensure that TRUST-
CHECKPOINTS’ provides an end-to-end, information-
theoretic guarantee: any unauthorized instruction or off-chip
fetch in the scanned region necessarily incurs a cumulative
delay that the verifier will detect, enabling reliable rollback.

3.6. Hardware Support Requirements

While TRUSTCHECKPOINTS shows that unconditional
software root of trust can be established on commodity
SoCs, achieving low-variance, high-confidence timing in
practice ultimately demands minimal hardware support. At
a high level, three capabilities are essential:

First, the CPU clock domain must be held at a fixed
frequency during the challenge. Dynamic frequency scaling
(DVFS) and thermal throttling introduce unpredictable slow-
downs that directly erode the tight timing margins on which
our detector relies. An external frequency-lock mechanism,
whether a dedicated PLL controller or a hardware jumper,
ensures that every pass of the randomized-polynomial loop
proceeds at exactly the same rate.

Second, all other masters on the system interconnect
must be quarantined or held in reset. Background DMA,
peripheral-driven bus traffic, or timer interrupts can inject
stray cycles and widen the noise floor. By gating off non-
essential peripherals (e.g. disabling USB, NIC, MMC con-
trollers) and freezing their requestors, the challenge traffic
encounters a quiescent bus, so every observed delay truly
reflects the DUT’s own memory and compute work.

Third, the challenge–response link itself must exhibit
sub-microsecond, ideally nanosecond-scale, jitter. UART
over an OS interrupt cannot deliver that; instead, a low-
latency channel toggled handshake line lets the verifier
stamp start and end with minimal uncertainty.

In addition to these functional blocks, it matters deeply
that the entire interface be open and auditable. Any “black-
box” vendor IP on the challenge path becomes a single point
of undetectable compromise: a stealth clock glitch generator
or a hidden peripheral bridge could subvert the protocol.
Therefore, minimal trusted platforms require fully open
hardware specifications, as exemplified by Raptor’s TALOS
II, a PowerPC-based system designed specifically for high-
assurance computing with complete firmware and hardware
auditability [27]. For the clock-lock, bus-quiesce, and low-
jitter timing unit. While this shifts trust to the silicon vendor
and fabricator, an open design allows independent audit and
re-use across products, mitigating supply-chain risks.

4. Prototype

We implemented TRUSTCHECKPOINTS on the Rock-
Pro64 development board, which features a Rockchip
RK3399 SoC with a quad-core ARM Cortex-A53 clus-
ter. We chose an ARM core because it is representative
of the processors used in a wide range of embedded
and IoT devices today. Our MULTIPASS algorithm, which
was hand-written in AArch64 assembly for implementa-
tion assurance, lives in the BL31 stage of ARM Trusted
Firmware-A (TF-A). We expose it via two new Secure
Monitor Call (SMC) interfaces, checkpoint_record
and checkpoint_replay, so that any EL1/EL2 payload
(including a guest OS under Hafnium) can invoke our low-
level challenge logic in EL3.

4.1. Hypervisor Integration

We use Hafnium [28], a lightweight Type-1
hypervisor for AArch64, to mediate record/replay
between the guest and the secure monitor. In
Hafnium’s main hypercall handler we register two
new function IDs, HF_RECORD_CHECKPOINT
and HF_REPLAY_CHECKPOINT. On receipt of
HF_RECORD_CHECKPOINT, Hafnium:

1) Flushes all on-chip state (TLBs, caches, pending
workqueues, etc.).

2) Packages the VCPU registers and the designated
guest-memory range.

3) Issues an SMC into BL31 invoking our
checkpoint_record routine.

The HF_REPLAY_CHECKPOINT path performs the sym-
metric “restore” operation. By placing these hooks in EL2,
we achieve an in-band, record/replay mechanism that re-
quires no additional firmware layers.

4.2. Kernel Driver and Userland Interface

On the host side we implement a Linux platform driver
that registers a character device /dev/tc. At probe time,
the driver:

• Locates a reserved DRAM region via Device-Tree
and ioremap()s it.

• Pins execution to CPU 0 and hot-unplugs all other
cores.

• Exposes two ioctls, CHECKPOINT_RECORD
and CHECKPOINT_REPLAY, which wrap
stop_machine() contexts around the appropriate
hypervisor calls and cache/TLB flushes.

From user space, recording a checkpoint is simply:

ioctl(fd, CHECKPOINT_RECORD, 0);

and replaying it is:

ioctl(fd, CHECKPOINT_REPLAY, 0);

4.3. On-Demand Permutation Generation

We must prevent attackers from offline-analyzing a fixed
access order, because the checkpointed memory image is
public. We therefore generate each permutation index on
demand using a tiny Feistel-based block cipher keyed by
the verifier’s seed. Let n be the number of elements and
b = ⇓log2 n⇔. To produce the ith index, we:

1) Zero-pad i to a b-bit block.
2) Run a small number of Feistel rounds (using a

lightweight hash as the round function).
3) If the result j ⇑ n, re-encrypt until j < n (expected

< 2 tries).
This construction uses O(1) extra space, O(1) expected time
per index, and is invertible if needed.

4.4. Secure Monitor Assembly Routine

Our AArch64 assembly routine begins by saving all
callee-saved registers, loading the prime modulus and
Horner coefficients, and invoking perm_new to seed the
permutation generator. The core loop is a nested two-level
construct: an outer pass counter and an inner index loop.
Each iteration:

• Calls perm_get() to obtain the next randomized
address.

• Performs a 64-bit load from the on-chip SRAM
slice.

• Executes Horner’s rule using mul/umulh for 128-
bit modular multiplication, add/cmp/sub for modu-
lar reduction, and eor to XOR with the coefficients
computed from the random values (as in 2.6.1).

All intermediate values remain in registers and the code is
carefully aligned to prevent cache-line artifacts that could
mask genuine DRAM misses. After completing the pre-
scribed number of passes, the routine restores registers and
returns the accumulator via a secure output channel to the
external verifier.

4.5. Timing Channel

We deploy a Raspberry Pi Pico W (RP2040) as our out-
of-band timing monitor. The Pico W listens on a UART
link to the DUT and records timestamps with microsecond
resolution. By comparing the observed latency against the
baseline, the verifier can detect any deviations caused by
forced off-chip accesses or extra instructions.

4.6. Challenge Generation

Challenges are produced on a separate Rockpro64 acting
as the “challenge processor”. For each challenge session
it samples fresh randomness for the k + 1 Horner coeffi-
cients, the field element x, and the permutation seed ω, and
dispatches these parameters to the verifier MCU. Because
each seed is unique and the permutation is generated on
demand, the DUT cannot predict or prefetch future memory
addresses.

After establishing a baseline timing distribution during
calibration, the verifier detects tampering by:

1) Issuing a challenge and measuring the DUT’s exe-
cution time

2) Applying appropriate statistical tests (e.g., z-score,
modified z-score, etc.) to determine the probability
that this timing came from the baseline distribution

3) If the confidence level is insufficient, the verifier
has two options:

• Run additional independent challenges to re-
duce the probability of false positives

• Increase the number of passes P to amplify
timing differences, making anomalies more
statistically significant

The choice of statistical test, significance threshold, and
number of passes depends on the deployment’s security
requirements and acceptable false positive rate.

4.7. Engineering Results

Figure 4 depicts our hardware/software prototype in the
context of the architectural description above. This imple-
mentation requires no hardware modifications; we added
1,345 lines of C code to Hafnium, 274 lines of C code to
Linux, and 1,464 lines of C code plus 127 lines of assembly
to ARM TF-A.

Portability Considerations: The MULTIPASS algorithm
is architecturally agnostic as it requires only basic arith-
metic operations available on most processors. The timing-
based detection remains effective on any platform where
checked memory (SRAM/DRAM) exhibits lower latency
than unchecked storage (flash/disk). A universal character-
istic of modern memory hierarchies. While our current im-
plementation uses hardware virtualization for checkpoint/re-
store, systems without such features would need alterna-
tive state management strategies. The core challenge logic
remains portable, with only platform-specific checkpoint
mechanisms requiring adaptation.

(a) Hardware

DUT Verifier

T0

T1

ΔT = T1 - T0
ARM TF-A

Hafnium

Linux

App

MultiPass
time_us_64()

Baseline

checkpoint_replay()

time_us_64()

Time

C
ou

nt

𝑥, r0, r1, . . . , rk-1,
π

MultiPass
output

DUT calls replay

2 Verifier sends
challenge

DUT sends
result

3

4 Verifier checks
time and result

5
Accept if valid &
timely, else re-

challenge

1

Checkpoint

(b) Implementation Structure
Figure 4. TRUSTCHECKPOINTS prototype with RockPro64 (DUT) and
Raspberry Pi Pico (Verifier)

5. Generalizable Practical Challenges

In bringing TRUSTCHECKPOINTS from theory to prac-
tice on commodity ARM hardware, we encountered and
addressed a number of non-trivial engineering challenges.
These are important for understanding our prototype and
we believe are generalizable to similar work.

5.1. Moving Baseline and Nondeterminism

In practice, the “clean” timing baseline for our 500-
pass scan is not perfectly static; several environmental and
operational factors can shift it:

• Power-level and DVFS changes. On many SBCs
the CPU frequency (and core voltage) is adjusted
dynamically to save power or respond to system
load. If the board’s governor selects a different P-
state than during calibration, the scan runtime will
shift proportionally.

• Thermal throttling. Under sustained load the SoC
temperature may exceed its safe operating point,
triggering clock down-throttling in hardware. A scan
performed immediately after, or during, such thermal
events can be tens of milliseconds slower.

• PLL and clock jitter. Variations in the board’s crys-
tal oscillator, phase-locked loops, or supply voltage
noise can introduce small cycle-to-cycle timing jitter
that accumulates over long scans.

• Peripheral activity. Although we pin execution to
CPU 0 and disable interrupts, background DMA,
ECC scrubbers, or power-management controllers
may sporadically seize the memory bus, slightly
perturbing the scan time.

Mitigation. To maintain a stable baseline we recommend:

1) Fixed P-state: lock the CPU to a known frequency
and disable dynamic scaling during both calibration
and the challenge.

2) Thermal control: attach a heatsink (or fan) and
allow the processor cool before running the chal-
lenge.

3) Periodic recalibration: rerun the baseline scan
whenever the board’s power, cooling, or firmware
configuration changes.

4) Peripheral interference: power off peripherals be-
fore running the challenge.

5.2. High-Precision Timing

Reliable detection of off-chip detours hinges on our
ability to distinguish the tiny extra delays introduced by
malicious memory accesses from the background jitter of the
timing channel. In our prototype, we rely on the RP2040’s
microsecond-resolution timer over a UART link, whose
intrinsic jitter, arising from interrupt latency and baud-rate
granularity, can be on the order of several microseconds. To
overcome this coarse granularity, we iteratively increased
the number of passes until a statistical test produced a
significant separation between the baseline histogram and
the attack histogram that used the next fastest available
memory (see 6.2). In an ideal instantiation, one would
employ a low-variability channel or a timer with picosec-
ond resolution. With sub-nanosecond resolution, the same
randomized-polynomial protocol could run with far fewer
passes, reducing runtime overhead while still detecting any
out-of-band memory or compute detours.

5.3. Challenging Entire Memory State vs. Boot-
strapping Trust

Performing a full challenge over the entire 4 GB of
DRAM on a RockPro64 requires roughly 30 minutes on a
single Cortex-A53 core. To reduce this latency, we employ
a two-stage, “bootstrap” approach:

1) Test SRAM: First, restore and verify the contents
of on-chip SRAM, which now holds the hash of
the full checkpoint. Then, use this verified hash to
authenticate the full checkpoint stored in DRAM.

2) DRAM bootstrapping: Once the contents of
SRAM are verified and trusted, the code stored in
SRAM can safely hash the checkpoint image in
DRAM and zero out all unused memory.

5.4. Non-maskable Interrupts (NMIs)

Non-maskable interrupts bypass all software level mask-
ing mechanisms. They always preempt the CPU. On many
commodity SoCs, NMIs cannot be disabled or rerouted,
so any NMI during the challenge window invalidates the
timing measurement. Because NMIs are event-driven and
exceedingly rare on a healthy system, there is no fixed
probability model for their occurrence. In practice, TRUST-
CHECKPOINTS simply retries the challenge.

We note that the prevelance of system management
interrupts (SMIs) is likely to be a particular challenge on
any modern x86 platform. SMIs are generally established
to run in firmware at boot time and then locked away.
Unfortunately, this firmware is largely a black box, making
it both a source of potential malware, and impossible to
validate even if not.

5.5. Compression and Predictable Sequences

To prevent an attacker from exploiting deterministic
access patterns, e.g. by prefetching or caching predictable
memory regions to avoid slow fetches, we randomize the
order in which memory is traversed during the challenge.
Additionally, we compress the checkpoint data to minimize
their footprint. This eliminates unused slack space that an
adversary could use to stage malicious payloads and avoid
the swaps to slower memory.

5.6. CPU Microarchitecture Considerations

The RK3399’s Cortex-A53 cores feature an in-order,
dual-issue pipeline with a small branch predictor, a minimal
return stack, and limited nonblocking loads [29]. None of
which allow an attacker to hide extra work within our tight
timing window. In our design:

• The Horner loop is a strict data-dependency chain:
each 64-bit modular multiply-add depends on the
previous result. Since the A53 cannot reorder or
split that sequence without corrupting the polyno-
mial, any interleaved instructions stall on the single
address generator or the ALU complex port.

• We flush instruction and data caches before each
challenge, so every SRAM access and any forced
DRAM/off-chip detour pays full latency. With only
eight nonblocking-load entries, injected memory op-
erations quickly saturate the buffer and lengthen
execution time.

• The single load/store unit and in-order writeback
stage force any extra load/store cycles or execution-
latency interlocks (e.g., waiting for a 4-cycle mul-
tiply) to serialize, directly adding to the measured
runtime.

• Interrupts and the MMU are disabled during
measurement, preventing asynchronous events or
prefetchers from skewing timing.

Together, these properties ensure that no microarchi-
tectural trick on a Cortex-A53 can hide the cost of extra
instructions or off-chip fetches: either the polynomial result
is invalid or the runtime exceeds the calibrated bound,
allowing the verifier to detect tampering.

Advanced Processors: Out-of-order CPUs with larger
reorder buffers, multiple execution units, and aggressive
speculation cannot break TRUSTCHECKPOINTS’s security
guarantees due to the fundamental structure of our algo-
rithm. MULTIPASS computes a serial accumulator where
each iteration depends on the previous result and fetches
from a pseudorandom address determined by that result.
While OoO execution can hide small latencies (e.g., precom-
puting the next address in the permutation), it cannot break
this dependency chain or issue multiple permuted memory
fetches in parallel. The throughput remains fundamentally
bounded at one word per iteration, regardless of the CPU’s
out-of-order capabilities. The serial data dependency in our
polynomial evaluation ensures that even the most aggressive
speculation cannot create exploitable idle cycles for mali-
cious code to execute undetected.

5.7. DMA TOCTOU Vulnerabilities

Direct Memory Access (DMA) enables peripherals like
network cards, storage controllers, and GPUs to transfer
data without CPU involvement. In principle, an attacker
controlling a malicious peripheral (or compromising legit-
imate peripheral firmware) could attempt to queue DMA
transfers to overwrite memory regions after verification.
TRUSTCHECKPOINTS addresses this threat through multiple
enforcement strategies that bound DMA effects during the
challenge window:

(1) DMA Descriptor Challenge: We stop DMA queues
and zero DMA descriptors, which reside in DRAM. By
including these descriptor locations in the challenged region,
any malicious DMA requests become immediately visible
and cause challenge failure.

(2) Peripheral Quiescence: Deployers can hard-quiesce
peripherals by asserting reset signals, gating clocks, dis-
abling DMA engines/channels, and masking interrupts. The
relevant control/status registers are included in the chal-
langed region to verify and maintain this quiesced state
throughout the challenge.

(3) SRAM Isolation: In SRAM-bootstrap mode,
TRUSTCHECKPOINTS leverages the fact that on many SoCs,
on-chip SRAM is not DMA-accessible, providing natural
isolation from DMA-based attacks.

TRUSTCHECKPOINTS’s security guarantee holds when
at least one of these enforcement strategies is active during
the challenge window.

5.8. Do We Have the Fastest Implementation?

Our MULTIPASS implementation achieves the theoreti-
cal minimum for sequential polynomial evaluation: exactly
d fetches, d multiplies, and d adds per pass. On the A53,

this translates to one multiply, one modular reduction se-
quence, one load, and one XOR per iteration. Our hand-
tuned assembly saturates both issue slots with zero wasted
cycles—the strict dependency chain prevents any reordering
or parallelization.

Could vectorization help? Vectorization cannot improve
our performance due to the fundamental structure of our
algorithm, not architecture-specific limitations. Our loop
computes a serial accumulator where each iteration depends
on the previous result and fetches from a pseudorandom
address determined by that result. SIMD lanes have no inde-
pendent work to parallelize, each step must complete before
the next can begin. Attempting vectorization would only add
overhead from packing/unpacking operations and GPR-to-
SIMD register moves without any throughput benefit.

The engineering challenges we encountered—firmware
integration, noise calibration, memory shuffling, and micro-
controller coordination are solvable implementation details,
not fundamental barriers. Our working prototype demon-
strates the potential for establishing an unconditional soft-
ware root of trust on commodity hardware, paving the way
for future exploration and development.

6. Evaluation

Is it possible to programmatically detect malware with
high confidence using the proposed technique? After n
passes what is the probability that we would not be able to
detect a single malware instruction? Our detection system
must have a very low false negative rate and low false
positive rate.

6.1. Detecting a Single-Instruction

The fundamental challenge in TRUSTCHECKPOINTS is
detecting minimal adversarial interference, specifically, the
injection of even a single malicious instruction. Unlike
traditional malware that requires substantial code footprints,
a sophisticated adversary might attempt to hide just one
critical instruction that redirects control flow or leaks sensi-
tive data. This represents the hardest detection scenario: the
adversary minimizes their footprint while maximizing their
impact.

To retain even this single instruction in memory
scanned by TRUSTCHECKPOINTS, an adversary must evict
part of the checked state to make room. Since TRUST-
CHECKPOINTS fully occupies the challenged region dur-
ing verification, any such evasion requires swapping data
between fast, challenged memory and slower, unmonitored
memory. The minimum viable attack requires at least two
instructions per word:

LDR Xn, [source_address]
STR Xn, [dest_address]

Each swap operation incurs a timing penalty that accu-
mulates across the challenge. Our evaluation demonstrates
that TRUSTCHECKPOINTS can detect these minimal timing
perturbations with high confidence.

6.2. Experimental Setup

We evaluate TRUSTCHECKPOINTS’s detection capabil-
ity on a RockPro64 board with an RK3399 SoC, using a
single Cortex-A53 core to test 192 KB of on-chip SRAM
(INTMEM0). We selected 500 passes based on preliminary
testing that showed this number provides sufficient statis-
tical separation between baseline and attack distributions
while maintaining reasonable challenge time (9.6 seconds).
With more passes, the increase in challenge time offers
diminishing detection benefits as the distributions are al-
ready well-separated. Our experiments measure end-to-end
latency across 500 randomized polynomial scans under three
scenarios:

1) Baseline: Standard MULTIPASS execution with no
adversarial activity

2) DRAM Attack: Adversary swaps one word to off-
chip DRAM per pass

3) IOMEM Attack: Adversary swaps one word to
memory-mapped I/O space per pass

Each scenario was executed 50 times to characterize
timing distributions. We disabled interrupts to ensure timing
consistency while maintaining realistic system conditions
with background peripherals active.

6.3. Data Independence

DRAM

0 5 10 15 20

0

0.5

1

AC
F

Baseline

0 5 10 15 20

0

0.5

1
IOMEM

0 5 10 15 20

0

0.5

1

Figure 5. Our data shows no serial correlation, suggesting independence-
assuming statistical tests apply. The dotted red lines represent the 95%
confidence interval for the noise floor.

In order for statistical comparisons to be made a com-
mon requirements is that our sample is independent. Fig-
ure 5 shows the serial correlation plots for all three of our
scenarios along with bounds on signification correlations.
As can be seen the data has no serial correlation with high
confidence.

6.4. Empirical Comparisons

Figure 6 shows the histograms of the baseline, DRAM
attack, and IOMEM attack scenarios. Given the lack of serial
correlation, this is sufficient representation of the data.

Baseline: The baseline distribution is for legitimate chal-
lenge runs. The measurements exhibit a tight distribution
with mean 9.590↓106 µs and standard deviation 185 µs.
This establishes our detection threshold: any execution ex-
ceeding this baseline by multiple standard deviations indi-
cates potential tampering.

9.591 9.592 9.593 9.594
Time-of-Flight (s) 106

0

5

10

15
C

ou
nt

Timing Comparison
DRAM
Baseline
IOMEM

Figure 6. Empirical distributions show a clear separation between baseline
and attack scenarios. Even the fastest IOMEM attack is readily distinguish-
able from legitimate execution.

DRAM-Based Attacks: The most detectable attack vec-
tor involves swapping data to off-chip DRAM. As shown in
Figure 6, DRAM-based evasion produces a clear rightward
shift in the timing distribution. The mean execution time
increases to 9.594↓106 µs—a small but consistent delay of
approximately 4,000 µs compared to the baseline.

IOMEM-Based Attacks: A more sophisticated adver-
sary might attempt to use memory-mapped I/O regions,
which typically offer lower latency than DRAM. Fig-
ure 6 shows that IOMEM attacks produce a smaller but
still detectable timing shift. The mean execution time of
9.591↓106 µs represents only a 1,000 µs delay—one quarter
of the DRAM overhead compared to the baseline.

6.5. Statistical Comparisons

We now examine the statistical divergence between
baseline and attack distributions to confirm that single-
instruction attacks create distinct measurements that are
fundamentally different from legitimate execution.

We use two different tests to do so:

• The unpaired t-test [30] compares the means of the
distributions with the null hypothesis that they are
the same.

• The Kolmogorov-Smirnov test [31] compares two
distributions with the null hypothesis that they are
the same.

Figure 7 presents three complementary statistical tests
that show that the distributions are significantly different.
The extremely low p-values (< 10→23) indicate that the
probability of observing such timing differences by chance
alone is small under the null hypothesis that attacks and
baseline come from the same distribution.

6.6. Detecting Attacks

While demonstrating that attack distributions differ from
baseline is important, deployment requires the verifier to

classify individual timing measurements as either legitimate
or malicious. We evaluated three statistical approaches for
single-point outlier detection by testing each individual data
point from both the baseline and attack distributions, simu-
lating how a verifier would classify measurements.

We used the following detection methods:

Percentile-Based Detection (Non-parametric) [32]:
This method makes no distributional assumptions and di-
rectly uses the empirical baseline distribution. Each test
point is compared against the baseline data to determine
its percentile rank. This approach is robust to non-normal
distributions.

Z-Score Detection (Parametric) [32]: The classical z-
score method assumes the baseline follows a normal dis-
tribution. For each test point, we compute z = (x ↔ µ)/ϖ,
where µ and ϖ are the baseline mean and standard deviation.

Modified Z-Score Detection (Non-parametric) [33]:
This method replaces the mean and standard deviation with
robust statistics, the median and median absolute deviation
(MAD), making it less sensitive to outliers and applicable
to non-normal distributions.

The detection thresholds for each method represent
standard cutoffs in statistical outlier detection. For the
percentile-based method, the 2.5% threshold means we flag
points falling below the 2.5th or above the 97.5th percentile
of the baseline distribution, a common choice that captures
95% of normal behavior while identifying extremes in both
tails. The z-score method’s 3ϖ threshold is the classical
“three-sigma rule,” which assumes that 99.7% of normally
distributed data falls within three standard deviations of the
mean; points beyond this are considered statistical anoma-
lies. The modified z-score threshold of 2.5 is more liberal
than the commonly used 3.5, but was chosen based on
empirical optimization, it provided the best balance between
detection sensitivity and false positive rates in our experi-
ments.

Detection Performance: For each detection method we
used the following thresholds:

• Percentile-based: We identified extreme values
falling below the 2.5th percentile or above the 97.5th
percentile of the baseline distribution.

• Regular z-score: We used a threshold of |z| > 2.
• Modified z-score: We flagged outliers where |z| >

2.5.

For the percentile-based method, the 2.5% and 97.5%
cutoffs capture the most extreme 5% of data points, aligning
with a typical 95% confidence interval for normal behavior.
The regular z-score threshold of 2 corresponds to approxi-
mately 95% coverage under a Gaussian distribution.

The modified z-score method uses the median and
median absolute deviation (MAD) for robustness against
skewed or non-Gaussian distributions. We empirically de-
termined that |z| > 2.5 offered the best trade-off between
sensitivity and false positive rate in our evaluations.

The results in Figure 9 confirm that TRUST-
CHECKPOINTS can reliably distinguish even minimal

Scenario Mean Std Dev t-test ks-test
(↓106 µs) (↓103 µs) p-value p-value

Baseline 9.591 0.185 – –
DRAM Attack 9.594 0.130 1.67↓ 10→105 2.16↓ 10→23

IOMEM Attack 9.591 0.128 1.86↓ 10→41 2.16↓ 10→23

Figure 7. Both attack types are distinguishable from the baseline. All statistical tests indicate divergence, with extremely low p-values from the t-test and
KS-test. Chebyshev bounds with k = 31.6 also flag the attacks as outliers relative to the baseline.

Scenario Mean Std Dev t-test ks-test
(↓106 µs) (↓103 µs) p-value p-value

Baseline (Full) 1731.895 16.543 – –
MMC Attack 1735.465 28.587 4.37↓ 10→4 9.70↓ 10→2

Figure 8. Full-memory challenge results demonstrate that MMC attack timing remains statistically distinguishable from baseline, validating that our
detection methodology scales to gigabyte-sized memory regions.

single-instruction attacks from legitimate execution with
high probability. We achieve the low false negative rate
and the false positive rates that are necessary to make
this method deployable. This is what was achieved with
one challenge, but to achieve arbitrarily high confidence,
the verifier can repeat challenge until the cumulative false
negative probability falls below a target threshold.

Method FPR FNR
(%) (%)

DRAM Attack Detection
Percentile 0.0 0.0
Z-Score 0.0 0.0
Modified Z 0.0 0.0

IOMEM Attack Detection
Percentile 0.0 0.0
Z-Score 0.0 0.0
Modified Z 9.0 0.0

Figure 9. Detection performance metrics. FPR: False Positive Rate, FNR:
False Negative Rate.

6.7. Full-DRAM vs SRAM-Bootstrap Challenge

We evaluated TRUSTCHECKPOINTS across the entire
system memory (192 KB SRAM + 4 GB DRAM) on
a single core. A complete single-pass challenge requires
approximately 28 minutes (1.73↓109 µs).

To validate that our statistical detection methodology
scales beyond SRAM-only challenge, we tested detection
capability by introducing a minimal I/O operation (512-byte
MMC read/write) when the scan index reaches 100. This
attack produced timing deviations exceeding 200 standard
deviations from baseline. The statistical tests confirm sig-
nificant separation (t-test p-value < 10→3), demonstrating
that the same outlier detection techniques proven effective
for SRAM-bootstrap challenge, whether percentile-based, z-
score, or modified z-score, remain equally applicable at full-
memory scale.

The fundamental principle remains unchanged: any off-
chip memory access introduces measurable timing delays
that accumulate across passes and exceed baseline variance.
While we present only t-test and KS-test results here for
brevity, the three detection methods analyzed in our SRAM
experiments would yield similar detection performance, as
the underlying timing perturbations follow the same physical
constraints.

Though the challenge time makes frequent full-system
checks impractical. In deployment, we recommend focusing
on critical memory regions (e.g., kernel code, security mon-
itors) for regular most challenge, with periodic full-system
scans for comprehensive verification.

7. Conclusion and Future Work

We introduced TRUSTCHECKPOINTS, the first uncondi-
tional trust framework for embedded and IoT devices that
requires no stored secrets or trusted hardware and makes no
assumptions about attacker capabilities. By recording CPU
registers, SRAM, and DRAM checkpoints and applying k-
independent randomized-polynomial evaluation via Horner’s
rule, TRUSTCHECKPOINTS forces any malicious code to in-
cur detectable off-chip storage latency. Multiple randomized
passes, measured by an external tamper-resistant microcon-
troller, ensure that even a single off-chip fetch exceeds the
calibrated noise floor.

Our prototype on commodity ARM hardware (ARM
Trusted Firmware-A and Hafnium) includes an SRAM-only
evaluator and a full-memory mode. The SRAM-only config-
uration (500 passes over 192 KB) completes in roughly 9 s
and reliably detects any extra instruction or off-chip access.
These results show that keyless, information-theoretic root
of trust establishment is possible on constrained platforms
and provably secure against strong adversaries.

Future work includes exploring bandwidth-hard func-
tions that tie challenge runtime directly to memory band-
width, regardless of CPU parallelism, to further strengthen
security. We also plan to investigate Processing-in-Memory
architectures (e.g., UPMEM DPUs) to speed up challenges

on larger memory sizes. We hope TRUSTCHECKPOINTS
inspires further research into unconditional security for next-
generation connected devices.

References

[1] R. T. Prapty, R. Trimananda, S. Jakkamsetti, G. Tsudik, and
A. Markopoulou, “Madea: A malware detection architecture for iot
blending network monitoring and device attestation,” 2025. [Online].
Available: https://arxiv.org/abs/2502.15098

[2] Y. Li, J. M. McCune, and A. Perrig, “Sbap: Software-based attestation
for peripherals,” in Trust and Trustworthy Computing, A. Acquisti,
S. W. Smith, and A.-R. Sadeghi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 16–29.

[3] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas, “Intel® software guard extensions
(intel® sgx) support for dynamic memory management inside
an enclave,” in Proceedings of the Hardware and Architectural
Support for Security and Privacy 2016, ser. HASP ’16. New York,
NY, USA: Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/2948618.2954331

[4] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
Lightweight hardware-assisted attestation of program execution,” in
2018 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), 2018, pp. 1–8.

[5] Trusted Computing Group, “Tpm main: Part 1 architecture,
version 184,” https://trustedcomputinggroup.org/resource/
tpm-library-specification/, 2025, accessed: 2025-05-31.

[6] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “VRASED: A verified Hardware/Software Co-Design for
remote attestation,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019, pp.
1429–1446. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/de-oliveira-nunes

[7] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput.,
vol. 26, no. 5, p. 1484–1509, Oct. 1997. [Online]. Available:
https://doi.org/10.1137/S0097539795293172

[8] V. D. Gligor and S. L. M. Woo, “Establishing software root of trust
unconditionally.” in NDSS, 2019.

[9] V. D. Gligor, “What’s necessary to establish malware freedom un-
conditionally?” 2020.

[10] Y. Li, Y. Cheng, V. Gligor, and A. Perrig, “Establishing software-only
root of trust on embedded systems: Facts and fiction,” in Security
Protocols XXIII, B. Christianson, P. Švenda, V. Matyáš, J. Malcolm,
F. Stajano, and J. Anderson, Eds. Cham: Springer International
Publishing, 2015, pp. 50–68.

[11] ARM Limited, ARM TrustZone Technology, https://developer.arm.
com/documentation/100690/0200/ARM-TrustZone-technology, Jan-
uary 2024, accessed: 2024-01-01.

[12] L. Guo and F. X. Lin, “Minimum viable device drivers for arm
trustzone,” in Proceedings of the Seventeenth European Conference
on Computer Systems, ser. EuroSys ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 300–316. [Online].
Available: https://doi.org/10.1145/3492321.3519565

[13] N. Gordon, “Secure i/o on trusted platforms with lightweight
kernels.” January 2025. [Online]. Available: https://d-scholarship.
pitt.edu/46961/

[14] H. Yan, Z. Ling, H. Li, L. Luo, X. Shao, K. Dong, P. Jiang,
M. Yang, J. Luo, and X. Fu, “Ldr: Secure and efficient
linux driver runtime for embedded tee systems,” Feb. 2024,
network and Distributed System Security (NDSS) Symposium 2024
; Conference date: 26-02-2024 Through 01-03-2024. [Online].
Available: https://www.ndss-symposium.org/ndss2024/

[15] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger, “Tpm-fail:
Tpm meets timing and lattice attacks,” in Proceedings of the 29th
USENIX Conference on Security Symposium, ser. SEC’20. USA:
USENIX Association, 2020.

[16] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,
“Pioneer: verifying code integrity and enforcing untampered code
execution on legacy systems,” in Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles, ser. SOSP ’05. New
York, NY, USA: Association for Computing Machinery, 2005, p.
1–16. [Online]. Available: https://doi.org/10.1145/1095810.1095812

[17] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “Swatt: software-
based attestation for embedded devices,” in IEEE Symposium on
Security and Privacy, 2004. Proceedings. 2004, 2004, pp. 272–282.

[18] F. Armknecht, A.-R. Sadeghi, S. Schulz, and C. Wachsmann,
“A security framework for the analysis and design of software
attestation,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p.
1–12. [Online]. Available: https://doi.org/10.1145/2508859.2516650

[19] K. M. E. Defrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart:
Secure and minimal architecture for (establishing dynamic) root of
trust,” in Network and Distributed System Security Symposium, 2012.
[Online]. Available: https://api.semanticscholar.org/CorpusID:909934

[20] A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni, “Seed: secure
non-interactive attestation for embedded devices,” Proceedings
of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2017. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:308299

[21] X. Carpent, N. Rattanavipanon, and G. Tsudik, “Erasmus: Efficient
remote attestation via self-measurement for unattended settings,”
2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1191–1194, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:5051098

[22] A. Ghosh, A. Sapello, A. Poylisher, C. J. Chiang, A. Kubota, and
T. Matsunaka, “On the feasibility of deploying software attestation in
cloud environments,” in 2014 IEEE 7th International Conference on
Cloud Computing, 2014, pp. 128–135.

[23] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth, “New results for timing-based attestation,” in 2012
IEEE Symposium on Security and Privacy, 2012, pp. 239–253.

[24] M. Jakobsson and K.-A. Johansson, “Retroactive detection of mal-
ware with applications to mobile platforms,” in Proceedings of the
5th USENIX Conference on Hot Topics in Security, ser. HotSec’10.
USA: USENIX Association, 2010, p. 1–13.

[25] A. Borodin, “Horners rule is uniquely optimal,” in Theory
of Machines and Computations, Z. Kohavi and A. Paz, Eds.
Academic Press, 1971, pp. 45–58. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780124177505500087

[26] M. Elia, J. Rosenthal, and D. Schipani, “Polynomial evaluation
over finite fields: new algorithms and complexity bounds,” vol. 23,
no. 3, pp. 129–141. [Online]. Available: https://doi.org/10.1007/
s00200-011-0160-6

[27] Raptor Computing Systems, “Talos™ ii,” https://www.raptorcs.com/
TALOSII/, 2025, accessed: 2025-06-04.

[28] TrustedFirmware.org, “Hafnium hypervisor,” 2024, accessed: 2025-
05-31. [Online]. Available: https://www.trustedfirmware.org/projects/
hafnium/

[29] Arm Ltd., Arm Cortex-A53 MPCore Processor Technical Reference
Manual, Arm Ltd., 2018, revision r0p4, Document number DDI
0500J. [Online]. Available: https://developer.arm.com/documentation/
ddi0500/latest

[30] Student, “The probable error of a mean,” Biometrika, vol. 6, no. 1, pp.
1–25, 1908. [Online]. Available: http://www.jstor.org/stable/2331554

https://arxiv.org/abs/2502.15098
https://doi.org/10.1145/2948618.2954331
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://www.usenix.org/conference/usenixsecurity19/presentation/de-oliveira-nunes
https://www.usenix.org/conference/usenixsecurity19/presentation/de-oliveira-nunes
https://doi.org/10.1137/S0097539795293172
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology
https://developer.arm.com/documentation/100690/0200/ARM-TrustZone-technology
https://doi.org/10.1145/3492321.3519565
https://d-scholarship.pitt.edu/46961/
https://d-scholarship.pitt.edu/46961/
https://www.ndss-symposium.org/ndss2024/
https://doi.org/10.1145/1095810.1095812
https://doi.org/10.1145/2508859.2516650
https://api.semanticscholar.org/CorpusID:909934
https://api.semanticscholar.org/CorpusID:308299
https://api.semanticscholar.org/CorpusID:308299
https://api.semanticscholar.org/CorpusID:5051098
https://www.sciencedirect.com/science/article/pii/B9780124177505500087
https://www.sciencedirect.com/science/article/pii/B9780124177505500087
https://doi.org/10.1007/s00200-011-0160-6
https://doi.org/10.1007/s00200-011-0160-6
https://www.raptorcs.com/TALOSII/
https://www.raptorcs.com/TALOSII/
https://www.trustedfirmware.org/projects/hafnium/
https://www.trustedfirmware.org/projects/hafnium/
https://developer.arm.com/documentation/ddi0500/latest
https://developer.arm.com/documentation/ddi0500/latest
http://www.jstor.org/stable/2331554

[31] F. J. Massey, “The Kolmogorov-Smirnov test for goodness of fit,”
Journal of the American Statistical Association, vol. 46, no. 253, pp.
68–78, 1951.

[32] D. S. Moore, G. P. McCabe, and B. A. Craig, Introduction to the
Practice of Statistics, 10th ed. New York: WH Freeman, 2021,
original Date: 2011.

[33] B. Iglewicz and D. Hoaglin, Volume 16: How to Detect and
Handle Outliers. ASQ Quality Press, 1993. [Online]. Available:
https://books.google.com/books?id=E4QK0QEACAAJ

https://books.google.com/books?id=E4QK0QEACAAJ

