Secure I/O on Trusted Platforms with Lightweight Kernels

by
Nicholas Gordon

Bachelor of Science, University of Memphis, 2016

Submitted to the Graduate Faculty of
the Department of Computer Science in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2024

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Nicholas Gordon

It was defended on
August 8, 2024
and approved by
Dr. Amy Babay, DINS and Department of Computer Science, University of Pittsburgh
Dr. Adam Lee, Department of Computer Science, University of Pittsburgh
Dr. Devesh Tiwari, Department of Computer Science, Northeastern University
Dissertation Director: Dr. John Lange, Department of Computer Science, University of

Pittsburgh

ii

Copyright © by Nicholas Gordon
2024

iii

Secure I/O on Trusted Platforms with Lightweight Kernels
Nicholas Gordon, PhD

University of Pittsburgh, 2024

Trusted computing has become widespread and the complexity of trusted applications
has increased substantially, such as in real-time patient vitals data processing or employee-
free stores that continuously monitor customers. These applications differ from existing
trusted computing usage in that they directly acquire and process sensitive information
from sensors like cameras and microphones. Simultaneously, application demands are ex-
panding to include a rich, general-purpose OS environment to provide network, filesystems,
and multicomputing capabilities. An application runtime of similar capability approaches
an OS in terms of complexity and would require extensive interfacing with the underlying
untrusted OS anyway, so we claim that a full-stack trusted OS provides similar capabilities
with a smaller, less complex trust profile. Further, current trusted OSes fail to provide this
environment because they are designed to provide trusted services to untrusted applications,
and the use of full-weight kernels (FWKSs) like Linux is ruled out due to security concerns.
We aim to solve this problem by using lightweight kernels (LWK), which strike the correct
balance between security and usability and can fully exploit hardware to provide secure
device I/0.

Lightweight kernels are an OS design approach that presents a familiar programming
environment to Linux both in userspace and in the kernel, allowing many applications to
run without modification, as well as ease porting of existing device drivers. Further, hardware
is more directly exposed to programmers—that is, with fewer hardware abstraction layers—
enabling easy leveraging of platform hardware and peripherals. To demonstrate these design
advantages we develop a LWK trusted OS for the ARM TrustZone environment on a typical
IoT or edge computing hardware platform. Specifically, we extend the Kitten LWK to be
TrustZone-aware, develop an I/O stack to demonstrate the viability of a camera driver, and
then build a framework for securely paravirtualizing existing Linux drivers by using recent,

modern TrustZone hardware.

iv

Preface

2.0

3.0

Table of Contents

... xi
1.0 Introduction 1
1.1 Motivation: Autonomous/Smart Shopping 5
1.2 Thesis e 7
1.3 Research Contributions and Insights 8
1.3.1 Trusted Execution Environment (TEE) 8

1.3.2 Secure Peripheral Device I/O 9

1.3.3 Driver Paravirtualization 9
Threat Model e 11
2.1 Attestation 14
LWKs as Secure OSes 15
3.1 Background and Related Work 15
3.1.1 Trusted Execution Environment Models 15
3.1.2 System Software Assumptions and Application APIs 16
3.1.2.1 Microkernels and Unikernels 19

3.1.3 TEE OSes and Software Runtimes 20
3.1.3.1 Runtime Systems 21

3.1.3.2 Service-like OSes L 21

3.1.3.3 Formal Verification 24

3.1.3.4 Existing Mainstream Kernels 24

3.1.3.5 Commercial OSes 25

3.1.4 Lightweight Kernels 25

32 IWKsasTEEOSes 27
3.2.1 Hardware Assumptions 28

3.2.2 System Co-existence 28

3.2.3 Partition Boundaries and Messaging: the Interkernel 30

3.3 KaTZe: The Kitten LIWK TEEOS 31

3.3.1 Resource efficiency and TCB simplicity 32

3.3.2 Secure Interrupts L Lo 33

3.3.3 The Interkernel Channel 35

3331 Sockets 37

34 Evaluation 38

3.4.1 TrustZone Performance 38

3.4.2 Application Support and Environment Familiarity 38

3.4.2.1 Mongoose Webserver 40

3.4.2.2 SQLite3 Database 40

3423 SOD 41

3.4.24 Mmap-based IPC 41

3.4.2.5 WebAssembly Runtime: wasm3 42

3.4.3 Prototype Application and Benchmarks 42

3.4.3.1 SQLite3 speedtestl 43

3.4.3.2 Mongoose performance: sockets 44

344 Conclusion 44

4.0 Secure I/O Stack with Lightweight Kernels 46

4.1 Background and Related Work 0L 46

4.1.1 Protectingthedata 47

4.1.2 Protecting the channel 48

4.2 Trusting I/O: Secure Driver Stacks 50

4.2.1 Devices and internal complexity 52

4.3 Simplifying the Driver Stack 53
4.3.1 Driver Complexity: Video4linux2 and the Media Controller Frame-

work ..o 55

4.4 KaTZe Implementation of Trusted I/O Devices 96

4.4.1 Secure Device Access 56

4.4.2 Underlying System Bus Architecture 56

4.4.3 HTU21D Sensor: 12C Control and Data o7

vi

4.4.4 1IMX214 Camera: 12C Control, D-PHY Data 58

4.4.5 SoC Device Complexity and Documentation: RK3399 ISP 58

4.4.6 Limitation: Undocumented Security Features 60

4.4.7 Userland Camera Interface 61

4.5 Evaluation 62

4.5.1 ISP TrustZone Overhead 62

4.5.2 Image Recognition on Captured Frames 63

45.3 Conclusion 64

5.0 Paravirtual Device Drivers 65
5.1 Security Sensitivity of Devices L. 66

5.2 Background and Related Work 68

5.3 Split Drivers to Reduce Trusted TCB 70

5.3.1 The “Composite” Devices of the Paravirtual Framework 71

5.3.2 Containing Platform Complexity 72

5.4 Implementation of Split Drivers in KaTZe 74

5.4.1 Privacy and Security Considerations 74

5.4.2 Re-Using Existing Linux Configurations 75

5.4.3 Device Limitations: Memory Access Granularity 7

5.5 Evaluation 78

5.5.1 HTU21D: Paravirtual vs Ported 78

552 TCBReduction 79

553 Conclusion 80

6.0 Discussion 82
6.1 Support for Attestation Mechanisms 82

6.2 Conclusion and Further Work 84
Bibliography e 85

vii

List of Tables

LWKSs are comparable to existing TEE OSes in terms of code complexity. . . . 27
TCB measurements for trusted kernel candidates. 33
Paravirtualizing the platform drivers results in an average reduction of “57% per

device, or an overall LOC reduction of 53%. 81

viii

10

11
12

13

14
15

List of Figures

Processing data at the sensor and separated management and data access planes
are key components of our target class of applications. 2
Our threat model ensures that secure partition software cannot be tampered with
by the owner. L 12
The GIC’s hierarchical structure means the two partitions may compete for con-
trol of the GIC distributor’s configuration. Diagram from ARM [7] 34
The interkernel provides a generic message-passing system to implement arbitrary
SErvices ON tOP. e e e e e e e 36
KaTZe provides socket operations by delegating them to the Linux kernel. . . . 37
TrustZone memory protection imposes no overhead in the STREAM benchmarks. 39
TrustZone memory protection imposes no overhead in the RandomAccess (GUPS)
benchmarks. L 39
KaTZe supports a typical POSIX ABI “LAMP stack,” using split drivers for
sensors and delegated sockets for networking. 43
KaTZe benefits from the same application optimizations that Linux does for
SQLite3d’s speedtestl benchmark. 44
KaTZe’s socket implementation provides reasonable networking performance both
in connection latency and throughput with full delegation to Linux. 45
In our proposed architecture sensor data is securely sent to the trusted application. 49
Re-using drivers can be achieved with the “sledgehammer” approach that hosts
a complete VM, here denoted “DD/OS”. Figure from [51]. 52
Block model of a modern ISP, the ARM Mali-C55, showing considerable internal
complexity. Image from ARM [8] 53
The logical structure of the on-board ISP is several sub-devices. 59
Our driver model configures the ISP with a userspace library which is effected

by kernel drivers to hardware, without device abstraction. 61

ix

16

17

18

19

20

21

22

23

24

SOD achieves a recognition speed of 27 frames per second on KaTZe compared
to Linux’s 126. L
Decomposing a device reveals some have heterogeneous security properties which
permit secure shunting of functionality out of the TEE.
Our proposed driver model spans both the untrusted and trusted OS, delegating
platform management to the untrusted partition.
The functionality of a single “composite” paravirtualized device is provided by
several discrete hardware devices. Lo oL,
Our paravirtual framework organizes the system’s devices into three perspectives,
or “layers” of increasing granularity or abstractness.
Paravirtual drivers expose a “key” to the untrusted partition, which various
underlying platforms can fit to provide services to the TEE.
If input A linked to output B are trusted and a midpoint C cannot be configured
to output to an adversary, then C’s data is trusted even when control is not. . .
By changing only the selected Linux driver, our implementation re-uses valid
Linux configurations to enable a trusted paravirtual device.
The HTU21D paravirtualized driver achieves a reasonable fraction, 0.626x the

performance of a native driver equivalent.

70

73

75

Preface

I recall in the first year of my graduate studies how others explained the process loftily
as “you will expand the frontiers of human knowledge,” with emphasis on you. Now that I
am at the end of that process I understand that this could not be further from the truth,
and in fact I owe an incredible debt to so many around me, without whom I could not have
done this. Time is the only resource we can’t get back, and these people have given me so
much of their most precious resource. This is to thank them for their generosity and make
sure they get their deserved share in this achievement.

My friends and family: to my partner Sam, for all she has done. Her love and support is
immeasurable and I could fill pages and it would still not be enough. To my grandmother,
always Nana to me, for her unconditional support and encouragement and always, always
believing that I had it in me to do this. To my late grandfather, Papa, who gave me a
love of computers and technology that survives to this day. To Buck, who reminds me that
anything of value requires sacrifice and struggle to achieve. To Izzy, who reminds me that
we all face difficult struggles, but it’s easier if we face them together. To the rest of my
family, my mother, my sister, and Carole who remind me that far does not mean forgotten.
To the many friends I have made in Pittsburgh: Jenn, Matt, Emily, Maddy, Matt, Isabella,
Savannah, Ethan, and the many others for the social fabric they so seamlessly wove me into.

My academic friends and colleagues: to my advisor, Jack, for his principled mentorship,
for his high standards that continually pushed me to learn, grow, reflect, complain, and finally
to understand. For teaching me to always strive to do the best you can and that it will not
be easy but it will be worth doing. For his concern and investment of time and effort in my
growth as a researcher. To my other committee members for their unique perspectives and
for tolerating an inconvenient timeline; their input has substantially improved the content
and course of this work. To the #osdev community who were a sounding board for many
research ideas and who taught me a great deal along the way. To those who read this
manuscript and suggested improvements for their perspective, insight, and even more of

their time.

Xi

1.0 Introduction

Trusted computing has become a key computing domain and has joined the ranks of
primary design goals in many use-cases. As computing becomes more ubiquitous with the
continued expansion of IoT, edge, and mobile computing, data privacy concerns mount. The
dominant model for trusted computing is the “enclave” model, wherein trusted services are
provided by a codebase that’s minimized to improve safety and limit complexity. However,
as the kinds of workloads deployed to trusted execution environments (TEEs) increases
from things like secure key management [62, 63, 34|, mediating access to random number
generation [4], or DRM-enforcement [27] to complete data processing pipelines, the enclave
model falls short in a number of ways. Examples of these data pipelines can be seen in the
contexts of “smart shopping” experiences where cameras monitor shoppers and track what
they purchase [37] to facial recognition deployed in public spaces for tracking the spread
of infectious diseases [69]. These use cases promise to dramatically expand the amount of
information gathered and so will have large privacy implications for the broader public. In
these systems, data confidentiality is of great concern, not just for the system owners but
also the subjects of the collected data. Supporting the deployment of these data pipelines
into trusted infrastructure with appropriate security safeguards and privacy protections will
be a critical need in the near future. Fully supporting this use case requires an end-to-
end TEE architecture that incorporates secure 1/0, data processing, data storage, and data
transfer. In addition to providing effective security compartmentalization we would like to
move data processing as close to the sensors as possible in order to minimize the attack
vectors that come from data movement and distribution. This creates a need for IoT devices
in question to support secure access to local sensor devices as well as the ability to support
comprehensive data processing pipelines locally on the IoT platform.

An example of such a trusted sensing environment is shown in Figure 1. In this system
a collection of IoT devices is deployed into a physical space with various sensors to collect
information about the environment. The collected data will include multimodal information

aggregated from multiple types of sensors and capture the state of the physical space as well

as any individuals inhabiting that space. We assume that this information will be directly
beneficial to the owner/operator of the infrastructure and will also potentially provide ben-
efits to the individuals inhabiting that space. At the same time, the sheer scale of data
collected from the environment will pose significant privacy risks for the individuals in the
space, and so will require some level of privacy safeguards to be put in place. In our model,
we propose a technical solution to enforcing privacy safeguards. We assume that infrastruc-
ture owners/operators will be compelled, potentially via legal mechanisms, to perform data
collection, aggregation, processing, and storage inside an environment that provides privacy
protections in a way that is verifiable to the individuals whose data is being collected. The
foundation of our approach is hardware-based Trusted Execution Environments (TEE), and
their ability to provide trusted, secure, and attestable hardware partitions to isolate sensitive
operations.
TEEs allow a single

Distributed IoT Application
hardware platform to be __ cooe-eee-oo

partitioned into trusted and
Untrusted

Access
Control

untrusted domains. The

trusted domain ensures that

TEE

any code being executed Untrusted I@

Access Data
Control | Processing

is tamper-proof and that

_________ -

any data being processed

TEE I
Untrusted T 8

Control | Processing

by that code is likewise se-

cured from the untrusted

partition. In addition, | ToT oo oo oo ——--

__

TEEs generally also provide Figure 1: Processing data at the sensor and separated

mechanisms to remotely at- management and data access planes are key components

test both the integrity of of our target class of applications.

the trusted domain as well as the authenticity of the code and data contained in it. By
supporting both untrusted and trusted domains on a single platform, it is possible to deploy
a distributed architecture that allows an operator to directly configure and manage the in-

frastructure to support their needs, while restricting what they are allowed to do with the

data the infrastructure collects. With this arrangement the infrastructure can be separated
into an untrusted control plane and a trusted data plane, thus enabling secure and privacy-
enforcing data collection in an otherwise untrusted environment. Our goal is to balance the
requirements of both the owners/operators of the infrastructure as well as the individuals
whose data the infrastructure is collecting.

Currently, we do not know of a system that provides this capability: using unmodified
applications built for existing, typical deployments such as Linux and other UNIX-based
systems, while exposing to those applications secure I/O to sensors, all in the face of an
adversary like the system owner/operator who can deploy arbitrary, privileged software to
the untrusted system partition. The deficiencies of existing systems falls into three categories:
the TEE OS architecture and the applications it supports, the direct I/O capability, and
the security confidence in such a system, generally in terms of the trusted computing base
(TCB).

In modern TEE architectures, enclaves are expected to provide services with limited
scope [99, 4], and the trusted OS kernel is limited regarding resource ownership and alloca-
tion, device ownership, and the kinds of application requirements it is designed to support in
contrast to the comparatively much richer application environment found in the untrusted
partition, where the majority of application workloads currently reside. However, as new
classes of secure IoT sensing applications evolve it will challenge this “trusted service” model
as more primary application workloads move into the trusted domain. Further, in the cur-
rent enclave model applications must be built with a hard trust boundary in mind, forcing
programmers to carefully consider the data that crosses the boundary [26]. In addition,
the application APIs/ABIs exposed by modern TEE environments do not support modern
classes of applications, and often require extensive engineering and design work to adapt
existing solutions to a TEE architecture [68, 113, 67, 54]. These efforts introduce both addi-
tional development hurdles as well as the possibility for security-compromising bugs, thanks
both to increased complexity and the inability to use already hardened and tested software
packages [107].

Put simply, existing TEE OSes are not designed to host applications that are both general

purpose and secure, or to provide portable abstractions for direct access to secure I/0. To

address this issue we propose the use of lightweight kernels [85] (LWKSs) as the trusted
operating system in order to support a trusted execution environment that directly supports
a wide range of modern applications. The lightweight kernel is an OS architecture that
emphasizes design simplicity while implementing enough interfaces and features to provide a
familiar environment that is widely portable to existing applications. LWKSs by design do not
provide all of the features and capabilities of "full-weight” kernels (FWKSs) such as Linux or
FreeBSD, but rather identify a baseline of functionality that provides widespread portability
in as simple a design as possible. The end result is an application runtime environment
that provides many of the same basic process, file system, I/O, and memory abstractions
as a FWK, while not supporting the entirety of the FWK’s ABI. This allows application
binaries that leverage common and standard ABI features to run directly on an LWK without
modification and often without re-compilation. While LWKSs will obviously not support the
full range of applications that a FWK does, we claim that its compatibility is sufficient to
support the classes of applications likely to be used on an IoT platform. Ultimately, we are
faced with a balancing act between maximizing application compatibility and minimizing
the attack surface of the TEE, and we believe LWKSs occupy an attractive middle ground in
this continuum.

However, the OS and applications form only one part of the trusted sensing system.
These platforms also possess diverse sensors ranging from the simple motion detecting sensors
to the very complex, such as cameras that are themselves composed of semi-independent
components on the same module. One of the primary advantages in this regard that FWK
kernels possess is their robust driver support, driven both by manufacturers and independent
maintainers/developers. Although this situation suggests a viable path for secure sensing
could lie in hardening a FWK, approaching the problem from the “opposite end” so to
speak, the complexity inside FWKSs in terms of drivers and kernel infrastructure needed
to support diverse device hardware architectures makes analysis and security confidence
extremely difficult. Existing theoretical work to prove OS correctness has been limited
to comparatively simple microkernels [40] which moreover require specific behavior from
the hardware, reducing their generality. Further complicating this idea is that security

exploits are regularly discovered in mainstream production kernels like Linux [39], a problem

essentially guaranteed by the continual evolution of the kernel in different, simultaneous
directions.

Instead, directly driving sensors in the trusted partition is feasible, which we support
with two observations: first, the enormous diversity of devices supported by mainstream
kernels like Linux necessitates a similarly complex driver and kernel infrastructure. By rather
specifically targeting trusted sensing, we make irrelevant the majority of the cumbersome
driver infrastructure that mainstream kernels contain in order to support a wide variety of
devices. We claim that in stripping back these layers of complexity it is revealed that the
drivers for relevant sensors are in fact quite self-contained. The second observation is the
aforementioned split between the control and data planes. By this we mean that without
introducing data leakage it is possible to delegate control of a sensing device to the existing
FWK where the device driver is already supported, but move the dataplane portion of code
into the TEE itself. This split is similar to the model found in common virtual drivers,
such as virtio. In this context, VMs act as clients and treat the underlying hypervisor as a
service provider, requesting access to virtualized, generic devices, requiring the hypervisor
to translate or otherwise coordinate virtualized access to physical devices. This “generic
device” model hides hardware complexity from the client. However, our model is different
both in that the device data must be hidden from the service provider which controls the
device, as well as that our model arranges resource partitions horizontally across the trust

barrier as opposed to vertically as is the case with hypervisors.

1.1 Motivation: Autonomous/Smart Shopping

Distributed applications with privacy as a core motivation are problems we presently face.
Recently retail stores have introduced shopping experiences where customers don’t have to
interact with any employees to purchase items and leave the store, perhaps most prominent
is Amazon’s “Just walk out” or “Amazon Go” stores [37]. In these stores sensors monitor
customers as they shop, identifying their picked items as they go, and finally customers

can seamlessly leave the store without having to present their items at a checkout. This

is accomplished with sensors across many modalities widely ranging in complexity from
computer vision that performs person localization within the store to weight sensors on
shelves to help identify when items are taken. This rich, multi-modal information is used to
deliver the employee-free shopping experience, but the lifecycle and handling of that data
is almost fully in the control of the venue owner. This position creates a binary problem
where in order to get the shopping experience a customer must surrender control over highly-
identifying personal data or decline the shopping experience altogether. This problem exists
because there is a lack of technical solutions to control and regulate how a venue owner
uses a customer’s data. With such a solution, customers could define a data use policy that
venue owners must adhere to and in exchange venue owners can, for instance, incentivize
customers or “buy” their data by offering augmented experiences. The most permissive data
use policy may earn the full autonomous experience while the store owner may decide that
a more restrictive policy may only be rewarded with coupons or similar-what matters here
is the system that enables this capability. Additionally to the economic argument we expect
venue owners to face increased legal pressure to provide such a system, such as from the
EU’s GDPR [76]. In the case of legal compulsion a technical solution also provides value to
the venue owner as evidence of compliance with the legal privacy framework.

The Privacy Backplane research project tries to address the autonomous shopping use
case[46], and the requirements of the backplane project have greatly influenced our designs.
Further, the Privacy Backplane is a concrete example of the application trends introduced
above and illustrates the complexities in designing rich, trusted system software. A “privacy
backplane” is a distributed network of low-cost nodes, such as IoT-oriented single-board com-
puters, which securely gather and process privacy-sensitive data. Importantly, the node and
infrastructure owners may be untrusted, requiring the partitioning of each node in trusted
and untrusted partitions. The untrusted partition is used in the ordinary way for edge/IoT
contexts: load balancing, management, deployment of services, etc. The trusted partition
owns all sensors and securely collects and processes data from those sensors, which range
from simple motion detectors to complex cameras. The collected data contains sensitive
information about third parties, that is, entities other than the infrastructure owners. These

entities supply to the backplane a policy that determines what kind of actions on their data

are allowable. Each backplane will define its own “privacy types” that user policies interact
with. To make this collected data useful to the infrastructure owners, the backplane will
support the deployment of operators which transform collected data in some arbitrary way,
specified by privacy types. Examples include anonymizing operators, such as object identi-
fication computer vision applications; the data contains enough information to identify the
entity at the input, but the output of this operator cannot identify an individual. In design-
ing a TEE that supports a Privacy Backplane we face several key problems or requirements

which we consider in the course of this work:

1. An OS environment that supports “arbitrary operators” as well as software needed to
run such a distributed application.

2. Diverse I/O capabilities, at least including first-class networking and secure access to
sensors at potentially every node.

3. Data processing as close to the sensors as possible to minimize security risks.

These problems will be important design points for us to consider later on.

1.2 Thesis

We assert that lightweight kernels (LWK) are an ideal foundation to build a TEE that
supports general-purpose application workflows and provides direct access to secure I/O pe-
ripherals even in the face of a privileged, adversary. By striking a balance between simplicity
and usability, LWKSs provide a familiar application ABI with a slim TCB, expose a rich OS
environment, and allow applications to more directly leverage hardware. We describe and
implement such a system for the ARM TrustZone platform, including a kernel, an I/O stack
to securely drive sensors including cameras, and develop a virtualized driver model to allow

secure re-use of existing device drivers.

1.3 Research Contributions and Insights

This thesis is organized into discussions of the following research contributions, detailing

the design, implementation, and evaluation that lead to the following insights:

1.

Multi-kernel computing architectures are ideal to address the problems TEEs face. In-
stead of the isolated “secure enclave” notion, the trusted partition should be a first-class
partition with differing hardware and software requirements to the untrusted partition.
The trusted partition should not be fully minimized because this leads to inflexible so-
lutions that cannot easily grow and adapt to changing TEE workloads. We discuss this
in Chapter 3.

TEE hardware has improved in flexibility and so full-featured OSes capable of handling
diverse workloads are feasible and practical inside modern TEEs. Future TEE OS de-
signers should reconsider the use of highly-specialized OSes where possible and recognize
that sophisticated hardware allows rich OSes while preserving security. We discuss this
in Chapter 3.

System partitioning at the hardware level must be extended to all parts of hardware.
Existing, older TEE architectures that only allow the TEE to use a subset of hardware
are not adequate for modern TEE workloads. This has been recognized by current and
upcoming TEE architectures. We discuss this in Chapter 4.

Tightly paired with multi-kernel computing architectures, the trusted partition software
should leverage the untrusted partition whenever possible. Multi-kernel systems encour-
age OS composition which can be used to enable powerful functionality cheaply in the

trusted partition. We discuss this in Chapters 4 and 5.

A brief discussion of the contributions and their significance follows.

1.3.1 Trusted Execution Environment (TEE)

The foundational contribution provides a trusted operating system and runtime, specifi-

cally one that supports existing applications currently in use in IoT environments. Currently,

IoT deployments are becoming more and more pervasive and so the “cumulative mass” of

applications deployed grows. Security concerns are increasing in tandem and the greater the
inertia of these IoT deployments, the more painful it is to re-engineer them to target existing
TEE solutions that impose a strict and cumbersome application framework. By providing
an alternative runtime based on lightweight kernels, which we call KaTZe, which exposes
the familiar UNIX-like application programming environment inside the trusted envelope,
existing application deployments can be re-used with little to no source modification; most
applications can be targeted to our runtime entirely at the build configuration.

This provides an insight: a full-featured, mainstream kernel like Linux is not required to
support relevant application workloads. Instead, specializing the kernel allows us to simplify
the TCB, providing qualitative security improvements by eliminating the vast majority of

code that is needed to support the many edge-cases that make up “general-purpose” use.

1.3.2 Secure Peripheral Device I/0

As trusted computing expands in the mobile and IoT space it is acquiring new respon-
sibilities in addition to the traditional secrets management and integrity verification. In-
creasingly important are distributed trusted applications and trusted sensors, both of which
require secure access to 1/O. However, existing kernels like Linux achieve this with many
hardware abstraction layers (HAL), both in the kernel and in userspace. Our work enables
secure application I/O with substantially less complexity, partly by more directly exposing
hardware to userspace. We show that it is possible to support many devices, including those
as complex as cameras, largely by re-using existing drivers with their HAL parts removed.

The insight: much of the complexity present in mainstream kernels’ device models arises
from being generalist kernels that seek to support all devices on all hardware platforms. In
targeting a specific class of applications on a specific type of hardware platform we can trim

much of this fat without losing functionality.

1.3.3 Driver Paravirtualization

We observe that the complexity in existing drivers is of two kinds: core device function-

ality and integration with the broader kernel systems. Additionally, core device functionality

can be classified according to its security sensitivity. We recognize that a device driver has
control and data components and that only the data components are security critical. We
describe this device model and use this model to build a paravirtualization framework that
splits drivers across this axis. We show that in the context of shared, untrusted infrastruc-
ture this poses no greater security risk than if the TEE contained both the data and control
components.

The final insight is that as trusted application deployments advance, acquiring services
from an untrusted kernel becomes a significant paradigm, as opposed to the current situa-
tion where TEEs provide limited, secure services to untrusted applications. This paradigm
mirrors the current one by eliminating unneeded complexity in the TEE, but achieves it by
delegating to the untrusted kernel instead of being delegated to. We gain another advantage
from paravirtualization in terms of portability. By hiding control behind the paravirtual
curtain on the untrusted side, that untrusted side can potentially change without requiring
changes in the TEE itself. This allows for a TEE image to be somewhat hardware-agnostic

yet still secure.

10

2.0 Threat Model

Underpinning any security-focused system must be the threat model. As a primary use
case, 0T /edge platforms motivate our threat model discussion, but we do not limit ourselves

to that platform. In our model we have several actors:

e The untrusted infrastructure owner, who deploys and manages the system nodes. This
owner can install arbitrary privileged software to the unsecure partition.

e The trusted secure partition, in particular the software stack spanning from the secure
bootloader to the secure operating system and applications.

e The trusted third party, who “provisions” system nodes with a root of trust in an im-
mutable way before the infrastructure owner can deploy system nodes for secure use.
They act as a trust anchor.

o The owners of collected data. They are primarily stakeholders in the system and have

an interest that their data is used consistently with their policies.

In particular, the secure software stack must be agreed upon by the trust anchor and in-
frastructure owner jointly. This requirement hinders the infrastructure owner from deploying
trivially-backdoored software into the secure partition as part of the requested deployment.
Once a system software image is assembled by the owner it must be audited by the trust
anchor before cryptographic signing. The trust anchor must be publicly known so that data
owners can decide whether to trust that a specific system has been audited sufficiently. The
general architecture of our threat model is shown in Figure 2.

With this system, we make the following guarantees:

1. The infrastructure owner cannot acquire data from owners that has been collected by
sensors without the involvement of the secure partition. That is, the secure partition
always moderates data release to an untrusted actor.

2. The infrastructure owner can see that secure partition devices and sensors are active.

3. The secure partition software has an immutable cryptographic signature. A new system

software image can be deployed, but this image has a new, distinct signature for the

11

purposes of secure applications. In other words, the infrastructure owner cannot modify

the secure partition software without requiring reverification of the software stack.

This system provides these guar-

System Node

antees under assumptions concern-

ing mostly physical attacks and hard- Mot
App

App
ware implementation. Physical at-

MAQ”“ Trusted App
tacks are not considered, as tamper- PP o
. . Mainstream
proof devices is a well-developed Kernel TEE Kemel
industrial concern and protecting
RAM RAM Core || Core || Core

against physical attacks is largely or-

thogonal to protecting against at-

tacks in software. This means that
Untrusted

we do not consider attacks like direct Partition

bus snooping or chip delidding. Fur-
Infr?)svtvr::: ure Data Owner Trust Anchor
ther, the platforms that we deploy to (Customer)
Owns
will be controlled by a potential ad- “— Audits
versary and we cannot trust the en- Signs
tire hardware platform. If we could, =
gree Upon

existing security techniques would be Figure 2: Our threat model ensures that se-
applicable and this work would not cure partition software cannot be tampered

be necessary. While a main focus is with by the owner.

to secure sensors to prevent misuse of captured data, it is not generally possible to prevent
the device owner from installing their own, untrusted sensors in parallel to trusted ones.
Without a wider, more intrusive security technique, such as controlling all system busses
and exposing a virtual interface to the untrusted partition, we cannot prevent, for exam-
ple, a separate camera being connected and made available to the untrusted partition to
effectively capture the same data as the existing, secure camera. Thus, we require that,
once deployed, a system’s hardware configuration does not change—whether this is effected
through tamper-resistance techniques such as potting or due to legal enforcement does not

affect our work.

12

We assume that any security hardware is correctly implemented according to its spec-
ifications. We do not consider side-channels, since they can be used to defeat compliant
hardware anyway [14, 53, 41]. We assume that any deployed systems are provisioned se-
curely, essentially important for a secure boot scenario. As part of the secure boot process,
trusted keys must be present and permanently bound to the device to serve as a root-of-trust
which each stage in the boot process can refer to for verification. This assumption provides
us Guarantee 3 in the threat model and is a commonplace measure taken in secure systems
currently.

A primary use case of this work is distributed, IoT sensing environments. Accordingly
systems may be in public locations without complete physical security, and a large variety
of software may be run for administration purposes in the untrusted partition. We have two
types of adversaries: infrastructure owners who can install arbitrary, privileged software into
the untrusted partition for the purposes of managing the infrastructure in an honest but
curious manner [1], and non-owner adversaries whose intention is to subvert or compromise
system behavior. Since infrastructure management responsibilities are offloaded from the
trusted environment, we assume that the infrastructure operator will ensure that system
availability is maintained and that it is in their direct interest to do so.

Finally, we do not explicitly attempt to support mutually-distrusting applications in the
secure partition, instead assuming that the system owner will vet deployed software and
exclude malicious software. This assumption is supported by two facts: that attestation,
briefly described below, requires the entire secure system software image to be signed by the
trust anchor. This implies that any signed software image has been audited by at least two
agents, both interested in the continued good operation of the underlying system. Further,
changing the underlying privileged software will be generally unnecessary and even changing
the userspace software image will be uncommon. Instead, we envision that software sand-
boxes such as WebAssembly runtimes will be deployed, providing a reasonably-secure vector
for less-trusted software to be deployed into. While traditional, existing operating system de-
sign provides isolation mechanisms from trusted applications misbehaving, we contend that
given the above factors, we do not consider that one trusted application may be adversarial

to another.

13

2.1 Attestation

An important component of a secure system’s functionality is attestation, both remote
and local. These attestation types are especially important when developing a trusted dis-
tributed system, as without any form of attestation it is generally impossible to establish the
trustworthiness of a communication partner. Local attestation, referring to the capability
through which running software knows the state of the hardware it is running on, typically
since the last reboot of the system. This provides software with some assurances about the
possible configurations of the hardware as well as the other software running on the sys-
tem. Remote attestation allows an inquirer to learn something about the state of hardware
and software of the attester. Both types of attestation require the involvement of a trusted
third party, sometimes called a “trust anchor.” A more thorough discussion of this system
is given in Section 6.1, but the important point for this section is that our “trust anchor”
from above creates a binding between a cryptographic identity and the specific hardware
system, stored privately. This identity is immutably bound to the hardware, providing a
trusted reference point for attestation. This trust anchor must not leak the private key for
the system, as once that private key has leaked, the hardware this key is bound to is never
again trustworthy. Mitigation schemes for this vulnerability exist, such as the use of physical
unclonable functions (PUFs) that mean that impersonation using only the private key is not

possible [97].

14

3.0 LWXKs as Secure OSes

In our first chapter we aim to show that the lightweight kernel model possesses ideal
properties and capabilities to implement a TEE OS that supports general-purpose applica-
tions and the relevant TEE hardware, including laying the groundwork for complex sensors
and delegated drivers, discussed in the later chapters. We lay out this design and then
describe our implementation of this design. We identify typical applications for the secure,
edge/IoT context, run them without modifications, and demonstrate good performance. We
do this with similar complexity to existing TEE solutions, demonstrating that the existing
shortcomings are due to differing design decisions, not infeasibility. Focusing on the archi-
tectural compatibility between TEE hardware and a full-stack OS environment, we conduct
micro-architectural benchmarks as well as a fully-composed application to demonstrate gen-
erality. We use a typical “LAMP” stack that’s directly relevant to the edge/IoT computing
context. But first, we provide a background on the most important concepts and describe

the state of the art along the way.

3.1 Background and Related Work

3.1.1 Trusted Execution Environment Models

At the bottom of any “trusted system” is the term “trusted execution environment
(TEE),” which describes the properties of the system and not a particular implementation, in
the same way that “mobile” or “cloud” computing does. Different hardware platforms offer
widely varying properties to leverage in the implementation of a TEE, and when discussing

computing security and TEEs, the “CIA triad” is used, first coined perhaps in the 1970s [70]:

1. Confidentiality — Unauthorized parties cannot read trusted data.
2. Integrity — Unauthorized parties cannot modify trusted data.

3. Awvailability — Trusted data is available for use by authorized parties on-demand.

15

TEEs provide some combination of these properties through a combination of hardware
and software mechanisms. For example, Intel’s SGX platform provides stronger guarantees
by providing in-place memory encryption and integrity checks with machine attestation as
a hardware feature. [35] On the other hand, implementations like ARM’s TrustZone provide
comparatively few properties, offering only access control mechanisms at the hardware level,
leaving TEE implementations to provide other security properties in software [90]. However,
in exchange for stronger security properties, TEEs like Intel SGX must endure hardware-
based limitations, such as a strict memory limit in the low hundreds of megabytes—though
later revisions of SGX in newer hardware remove this limitation at the cost of losing in-
place memory encryption. By contrast, TEE implementations with less advanced, integrated
hardware features like TrustZone, various academic RISC-V TEE designs [23, 20, 109, 50, 10],
or OpenPOWER’s PEF [34] enjoy increased software flexibility and aim to provide missing
components of the triad in software.

A key property of a TEE is its root of trust, which refers to the model in which software
comes to be trusted. In most TEE platforms today [90], the root of trust is static, typically
realized by writing an immutable cryptographic key into the hardware at manufacturing
time. Then, through trusted boot, earlier boot software can verify that subsequent software
is trusted if it is signed by this immutable key. Some systems like Intel SGX and AMD SEV
provide a dynamic root of trust wherein trusted software can be launched from untrusted
software. These schemes are more complex and how this is achieved is beyond the purposes
of our discussion. Overall, this scheme provides some guarantees of correctness in that a
manufacturer will be strict about the software that it signs—Intel is unlikely to stake their

reputation and sign unfamiliar, unaudited code.

3.1.2 System Software Assumptions and Application APIs

TEEs can also be classified based on the architecture of the software, broadly across
two axes: whether software deployed to the TEE can be third-party, and what capabilities
and interfaces the TEE offers those applications. The first axis, third party application
support, denotes whether a given TEE allows software other than that included with the

16

TEE to be used. While first-party-only software encourages coherent software design and
fewer potential attack vectors for insecure or compromised software it obviously restricts the
application set to that which the TEE developer is interested in. Current TEESs, such as
Android Trusty [4], follow this model, with all software deployed to the TEE being part of
the same source tree as the Trusty TEE itself. More general is OP-TEE [99], where arbitrary
applications can be deployed and run in OP-TEE, but only a limited featureset is exposed
by the kernel, and applications must be constructed around a specific API. The ends of this
axis can be broadly described as “specialized” or “general-purpose” APIs. To be clear, when
we say general-purpose APIs we mean those that are in mainstream use today for ordinary
programs: UNIX-like/POSIX-like syscall interfaces and runtime environments, with access
to ordinary OS abstractions like multiprocessing, filesystems, and network sockets. Thus
we mean by “specialized” APIs those that discard some number of these “typical” features.
Most, if not all, current mainstream TEEs require the use of somewhat specialized APIs,
ranging from the GlobalPlatform TEE API which requires applications to have secure and
non-secure halves that explicitly marshal data across the trust boundary using a message
model, to the minimally-intrusive APIs of Android Trusty that provide a mostly-ordinary C
application runtime that exposes a different set of syscalls than one expects from a UNIX-like
OS.

However, utilizing these existing TEE APIs is cumbersome, since applications of some
complexity will need to request services from the FWK service kernel, which requires sending
messages across the trust boundary, which is exposed to userspace applications directly.
Existing applications must be designed around this API, resulting in limited or no immediate
code re-use.

This model has a strong assumption that only the security-critical parts of an applica-
tion’s logic will be hosted in the secure enclave, done to strengthen security considerations
and reduce the likelihood of breaches, accidental or otherwise. This model is fundamen-
tally incompatible with the use-cases we identified, as applications grow in complexity, more
kinds of data processing will be in the secure system partition. Thus, accommodating these
complex application systems requires re-engineering according to the existing TEE APIs,

or rejecting those APIs, which we do. We contend that such re-engineering is plainly in-

17

feasible, and instead a more general-purpose TEE OS should follow the lead of existing
general-purpose OSes and provide a familiar program environment. However, we want to
avoid the increased complexity that modern FWKs such as Linux have accumulated over the
years, and so we target the “common case” of broadly POSIX-compatible APIs, eschewing
notorious Linuxisms that some applications have grown to rely on for improved performance,
such as epoll. Instead, we prefer portability where possible, roughly following the example
of the BSD OSes.

To be clear, our use case of driving applications workloads from the trusted world means
we are inverting priorities, retargeting the untrusted OS as the “service OS” instead. While
we may interact with the untrusted world, we anticipate large portions of software systems
to have lifecycles fully inside the trusted space, with most untrusted world communication
taking the form of responsibility offloading for security non-critical paths, like network stacks
when the transport-layer security protocol (TLS) is in use. This difference in model wants a
full-featured, familiar programming environment for applications such as typical libc support
and even high-level language support such as WebAssembly or Java. As part of the existing
application programming environment, support for a POSIX-like system call use model is
also important.

As trusted applications become more complex and aim towards general-purpose uses in-
stead of security-critical functions like key management or randomness sources, the diversity
of needed resources also increases. A straightforward application runtime like Intel SGX’s
SDK provides a way to develop trusted CPU operations and encrypted memory but does not
provide networking, filesystem access, etc. This is offloaded to the untrusted caller, requiring
the trusted application to encrypt data. As stated previously, to extend trust into the I/O
plane a runtime hosted by an untrusted OS cannot access this peripheral hardware directly,
and extending the runtime to integrate with the untrusted OS comprises a set of features
that’s broadly equivalent to an OS. That is, implementing support in such a runtime, we
claim, is similar to implementing a trusted OS that’s tightly coupled with the untrusted OS.
In other words, the spectrum of application runtime environment stretches from runtimes
that support only classical, CPU-based applications, like WebAssembly, to a complete OS

that includes libraries for interacting with the entire system. We contend that the closer to

18

the OS end of the spectrum you get, the harder it is to not realize the application runtime
as a general-purpose OS, and trusted applications are continually pushing in this featureful

direction.

3.1.2.1 Microkernels and Unikernels

An important design criterion is minimal or no re-engineering of existing applications.
As such, any operating system must provide or emulate the full range of typical OS ab-
stractions that mainstream applications expect. Most existing microkernels provide some
sort of Linux/UNIX compatibility layer, but do so at a performance cost. While the use
of a microkernel is possible [38, 40|, we contend that a microkernel with a well-integrated
compatibility layer necessary to support these applications would be better served by more
tightly and efficiently integrating this compatibility layer into itself. In other words, if the
target workloads are broadly POSIX-like, then the underlying kernel does not benefit as
much from the scalability, composability, and design cleanliness that microkernels typically
offer.

Unikernel systems such as Hermitcore [48], Lupine [43], UniGard [91], and others are
interesting alternatives. Unikernels present their own problems—most notable here is how to
multiplex underlying hardware. TrustZone does not have a strong notion of inter-enclave
separation, and so the use of unikernels to implement trusted multiprocessing mostly offers
improved assumptions of correctness and crash resilience, as a malicious or misbehaving
unikernel cannot be prevented from corrupting another’s memory. Additionally, implement-
ing multiprocessing requires a robust, flexible inter-unikernel communication method, which
again either requires the coordination of a hypervisor or manual coordination of shared
memory channels. We conclude that the logical correctness and application encapsulation
benefits offered by unikernels are largely outweighed by the requirement of a hypervisor for

separation.

19

3.1.3 TEE OSes and Software Runtimes

Highly related to the application runtime that TEEs expose to the applications is the
abstractions and features that the underlying OS provides. We previously described how
these features are exposed to the application, we now describe what features are exposed.
TEEs again can be placed on an axis from minimalist to maximalist. Further, the featureset
that the TEE exposes indicates what kinds of software the TEE designers thought might
be used. Systems like SCONE [9] lack a notion of a trusted OS altogether and provide only
an application runtime, relying on underlying hardware security to protect trusted code,
whereas systems like TrustZone’s OP-TEE [99] implements a complete OS environment with
a particular application SDK that applications must target. Shinde’s Panoply system [94],
which provides a typical OS abstraction environment within Intel SGX enclaves, also does
not address the related problem of I/O ownership. In almost all of these systems, however,
is the implicit notion that trusted software provides a specific, limited service that untrusted
software uses, which we call “service OSes.”

Existing solutions for TrustZone TEE OSes generally fall short by either being funda-
mentally unsecurable or by not supporting the target class of applications, whether due to an
incompatible application environment, insufficient resource allocations, or a lack of a secure
I/O pathway. Full-weight kernels like Linux or BSD-likes are full-featured at the cost of com-
plexity, which balloons the TCB. Linux is at the extreme end of complexity and features,
which introduces a very large surface area of code which may contain serious bugs, with
privilege escalation attacks being not uncommon in Linux and regularly discovered. In un-
trusted computing contexts this concern can be mitigated with resiliency and fault isolation
techniques that prevent a system crash in the event of software bugs. Trusted applications,
on the other hand, are designed with heightened expectations for correctness and security to
protect sensitive data. Linux and similar kernels’ high TCB size thus make them generally

unsuitable for use as a trusted OS.

20

3.1.3.1 Runtime Systems

Due to the expectation of running ordinary, POSIX-compatible workloads that take
advantage of a POSIX-like OS’s application environment and abstractions, existing runtime-
based systems like Tarnhelm [83] and TLR [89] that provide trusted computing by various
means using runtimes are not suitable. TLR is an early example of a language runtime
implemented for the TrustZone platform. The TLR system extends the .NET runtime with
primitives that allow specific portions of code to be run inside a TrustZone-protected enclave.
As a managed language runtime, TLR lacks most of the abstractions that modern OSes offer,
and they do not attempt a generic pathway for secure I/O. Tarnhelm is a more recent work
that allows sections of code to be run in a TrustZone enclave with compiler annotations,
allowing single-source applications to span the trust boundary transparently, at the function
call-level. However, their underlying TrustZone OS is based on OP-TEE and inherits most

of its deficiencies.

3.1.3.2 Service-like OSes

The OS’s capabilities inform the expected uses of the software; an OS without preemp-
tion requires applications to be carefully constructed to voluntarily cede control back to the
kernel, or else the system has no multitasking. The majority of TEE OSes we have deemed
“service OSes” because the features they expose indicate that applications deployed to the
TEE should be just that, services. Indeed, many adhere to a standard known as the Glob-
alPlatform TEE Client specification [26], and their design indicates clearly that untrusted
applications are the primary concern on a trusted computing-capable system. Many existing
TrustZone TEE OSes such as OP-TEE [99], Android Trusty [4], and the seL4-based Micro-
TEE [38], despite being different underlying kernel architectures, all deliberately target this
RPC-based API and limit the class of target applications to “trustlets” that provide trusted
services. GlobalPlatform is an industrial standards organization that creates vendor-neutral
technology and specifications for trusted computing systems. This standard, endorsed ex-
plicitly by ARM with their reference firmware implementation, TF-A [100], imposes this

service-like model onto applications. This dominant standard has resulted in a magnetic

21

pull, and much current TEE research is predicated on the use of the GlobalPlatform stan-
dard. Consequently, adapting these OSes to support general-purpose computing requires
substantial redesign and re-implementation.

By adhering to this architecture, existing TEE OSes have limited their own features and
reduced the complexity of applications they can support, resulting in a poor match given
current trends in trusted applications. Currently, TEE OSes are treated as second-class
citizens on the system and are given limited resource ownership. Often TEEs have small
memory allocations and no direct ownership of hardware resources, not even the CPU cores
they run on. For even embedded Al models with memory footprints in the gigabytes that
struggle to run on Linux on these systems already, these intentional resource limitations
preclude this class of application in the current trusted space. Our use case requires that
applications running in the trusted space be considered the primary component of the system,
rather than a service component, which rules out this dominant “service OS” paradigm.

Haven [12] and Graphene [18] allow unmodified applications to run in SGX by inserting
library OSes underneath the applications. Haven achieves this with the Windows ABI by
refactoring the Windows kernel into a user-mode library OS, eliminating the need for a
privilege mode switch. Graphene achieves this on Linux with the use of a library OS layer
that sits underneath enclaved applications, intercepting and translating system calls. Haven
and Graphene both explicitly argue our point that a full-featured OS is unsuited to the SGX
platform, remarking that putting OS semantics into an SGX enclave requires emulating
several common OS features. These works also do not address the important 1/O problem.
Shen’s Occlum system [92] conceptually extends the Haven system by providing inter-task
isolation under SGX.

OP-TEE [99] is currently the most widely used TEE OS for TrustZone, enjoying main-
line ecosystem support in Linux, the ARM trusted firmware, and the common U-Boot boot-
loader [103]. OP-TEE closely follows the GlobalPlatform Client TEE specification, though
not quite implementing all of the API, leaving out things like TLS connection termination
into a trusted application [72]. OP-TEE runs in a small amount of RAM and services requests
by context switching on a core and running small trusted applications with limited resources.

The OP-TEE OS core runs in trusted space, while a supplicant program in Linux facilitates

22

sending messages to OS core. OP-TEE presents OS-like trusted services as “pseudo-trusted
applications” that a client application must program against and call, not entirely unlike the
microkernel userland service model. Currently, the official OP-TEE distribution provides
drivers only for security-related platform hardware such as clocks, TPMs, and cryptographic
operation accelerators. Thus OP-TEE lacks a general secure I/O pathway, forcing on-sensor
data encryption as the only currently-supported model of secure I/0.

Pearl-TEE [33] is a TrustZone OS developed that is focused on allowing multiple, mutually-
untrusting-but-trusted applications in a TrustZone context. To accommodate this they par-
tially bring the notion of a general-purpose OS to TrustZone by extending OP-TEE with a
virtual memory system and privilege separation. They also provide access to network func-
tionality with a delegation system that forwards socket functionality to Linux. However,
we note that existing OS primitives, such as process isolation and hardware access modera-
tion, already can provide isolation between untrusting processes and have been extensively
researched. Further they do not fundamentally change the target application class from
OP-TEE or alleviate the resource constraints, limiting them in the same way that OP-TEE
is.

Android Trusty [4] is a TEE OS derived from the Little Kernel [56]. Trusty fits into the
same niche as OP-TEE of providing trusted services to an untrusted application, but in the
context of Android. An inspection of Trusty’s repositories reveals a similar driver situation
to OP-TEE, with included drivers ending at core platform security hardware on supported
platforms.

ANDIX OS [24] is an OS for TrustZone developed specifically for industrial control
systems. ANDIX also adheres to the GlobalPlatform Client TEE, which imposes similar
application design limitations as OP-TEE or Trusty. ANDIX claims to also support the
GNU Newlib C standard library for applications. ANDIX additionally claims to be able
to request services from the untrusted world, but only for the purposes of satisfying other
untrusted world requests. In other words, ANDIX falls inside the existing architecture of
untrusted applications leveraging trusted services. ANDIX makes no claims about driver
compatibility or ease of porting existing drivers.

Existing TrustZone TEEs are largely implemented with service OSes which struggle to

23

host general-purpose applications. Work [31, 83] has remarked upon OP-TEE’s constrained
memory capabilities, and discussions in the OP-TEE community have acknowledged these

restrictions, but not yet fixed them.

3.1.3.3 Formal Verification

Although works like SeL4 [40] have been formally verified the burden placed on pro-
grammers is likely too great. While in theory promising, there have been few successful
production-type solutions delivering formal verification as a capability.

MicroTEE [38] is based on the seL.4 microkernel [40], a formally-verified secure microker-
nel. Their claim is that by using a verified kernel, one of the primary concerns with allowing
richer applications and OSes into trusted spaces can be avoided. While this approach re-
duces the overall kernel TCB and the amount of TCB involved in any particular component,
this comes at the expense of performance and capability. To support Linux applications
the kernel must either provide a compatibility layer or run Linux in a VM. Using a VM to
run applications on an sel.4 microkernel contains possible privilege escalations to that VM
only, at the cost of potentially requiring all applications to run in separate VMs. Otherwise
applications must be modified to build against the sel4 library rather than against typical
POSIX-like libraries supported by FWKs.

3.1.3.4 Existing Mainstream Kernels

A main concern with running a full-weight kernel like Linux or a BSD derivative is
complexity, which balloons the trusted computing base (TCB). Linux, for example, is very
featureful at the cost of high complexity, which introduces a large surface area of code which
can contain bugs jeopardizing system stability or correctness. In untrusted computing this
concern can be mitigated with resiliency techniques like address space protection that prevent
a system crash in the event of incorrect software. Trusted applications, on the other hand,
are designed with heightened expectations for correctness and data security. Linux’s high
complexity makes it relatively trivial to perform privilege elevation attacks and thus using

such a complex solution as the trusted OS is unsuitable.

24

3.1.3.5 Commercial OSes

Commercial OSes are harder to evaluate due to their closed-source nature. T6 [101]
is a commercial TEE OS developed by TrustKernel. T6 is closed source and focused on
commercial products, though they claim to support the GlobalPlatform API, as well as rich
user mode libraries. Commercial products are difficult in research contexts intrinsically, as
companies may want to lay claim to functionality introduced by researchers. Additionally, we
cannot verify the claims or flexibility of T'6 due to its closed-source and proprietary nature.
Trustonic’s Kinibi TEE [102] is another commercial TEE in use on Samsung devices [16] and
automotive applications by their own copy. Trustonic claims to support richer applications
and to leverage TrustZone hardware.

In summation, current TEE OSes suffer from at least one of: a lack of resource allocation
and ownership, an inability to support familiar, rich applications, and a lack of device drivers
that all stem from intrinsic design decisions that they have demonstrated an inability or

unwillingness to part with. Our design, using lightweight kernels, provides these.

3.1.4 Lightweight Kernels

We outlined a few key properties that an OS for rich trusted applications should have:
ownership of and capability to use the TEE-enabling hardware directly, a familiar program-
ming model, an emphasis on minimal size and complexity, and designed to be a first-class cit-
izen on the system that shares resources and co-exists with the untrusted kernel. Lightweight
kernels can provide all of these properties to us without introducing significant obstacles.

Lightweight kernels (LWKs) are an approach to OS design that emphasizes performance,
simplicity and flexibility over feature-completeness [85]. Lightweight kernels are OSes that
provide C runtimes with a suite of common system calls. LWKs follow a design philoso-
phy explicitly rejecting generalism, specializing their design to a specific application class
and associated requirements. LWKs have most recently been used in the context of high-
performance computing to create resource partitions on nodes to improve performance iso-
lation, resiliency, and scalability. We recognize that this same model can be extended to

trusted computing by modeling the trusted and untrusted spaces as two such partitions,

25

each with their own, independent resources. It is important to note that LWKs are not
unikernels or embedded OSes — unikernels are targeted at single applications to provide
highly-slimmed kernels, and embedded OSes typically provide very few, if any, hardware
abstraction layers and privilege separation between OS and application. Regarding uniker-
nels we note the evident gradient from unikernel through LWKs to FWKs as the number of
supported applications grows from 1 to all.

Central to the design of a LWK is co-existence with a FWK, usually referred to as the
“service kernel,” which is often Linux. This “service kernel” has been used in the past to
enable delegation of complex or performance non-critical system calls to the FWK, as well
as to allow management of system resources in LWK partitions from the FWK partition.
Such close inter-partition OS integration will be important in empowering rich, trusted
applications, providing access to non-security critical capabilities instead. This model of
close inter-kernel interaction readily lends itself to the trusted partition architecture as well,
such as in the Pisces co-kernel system [74].

Finally, an LWK provides many of the benefits of both embedded OSes which provide
close hardware access as well as of Linux by providing a broadly Linux-compatible userspace
that supports many applications with zero modifications. Although often derived from ex-
isting OSes like Linux, LWKs are relieved of the complexity and overhead introduced by
Linux’s many hardware abstraction systems. This means that the hardware of the under-
lying system is more directly accessible, giving multiple benefits. A major design difference
is the general lack of hardware abstraction layers. FWKs seek in many cases to provide an
abstraction of hardware, constructing frameworks that help the diversity of hardware devices
provide uniform functionality at the userspace level. This decision results in broad hardware
compatibility at the cost of blurring the specific details of any individual piece of hardware, a
necessary consequence of abstraction. A TEE OS has a notion of security state and configu-
ration and for this notion of system security to be compatible with many underlying TEEs it
is necessary to create an abstraction, for example by creating a kernel notion of capabilities
and by requiring all kernel actions to be supplied with a capability. In contrast, an LWK
would “drill through” abstraction by recognizing the fact that system security on TrustZone

is achieved by setting permissions on specific regions of memory, embracing the hardware

26

Table 1: LWKs are comparable to existing TEE OSes in terms of code complexity.

Kernel Lines of Code Type
ANDIX 26,000 | TEE OS
OP-TEE 8,000 TEE OS

Android Trusty 7@ TEE OS
seL.4 ~8,700 TEE OS

Kitten 719,000 LWK

mOS ~17,000 LWK
fusedOS 727,000 LWK
McKernel 733,000 LWK
FFMK /Fiasco ~27,000 LWK

%Trusty is implemented as various library OS components and is difficult to gauge the “core” Trusty LOC.

directly. Though this approach sacrifices platform-independence by losing abstraction, we
gain comprehensibility and ease of development. Peripherals and other devices are readily
and directly accessible as well. We note that a maximally compatible, platform-independent
system must also be maximally abstract, which can be seen in Linux’s driver framework that
ties class of devices together with generic methods and requirements. Typical LWKs realize
this in a similar lines of code count to prevailing trusted OSes, including OP-TEE[99], An-
droid Trusty[4], ANDIX|[24], and seL4[40] while still providing a full-featured OS, as shown
in Table 1. For this comparison we consider the LWKs surveyed by Gerofi et al [25], using
only the core kernel code by comparison of source lines of code [45], as reported by the

sloccount tool [110].

3.2 LWKs as TEE OSes

In Section 1.1 the Privacy Backplane and its requirements were introduced. Here we
consider the design of the TEE OS, that enables that application. As a distributed network,

the backplane itself will need to establish and maintain trusted channels between nodes to

27

disseminate data throughout the network. As well, each node must be capable of arbitrary
workloads relevant to the IoT context: databases to securely retain collected data, computer
vision and AI models to process them, and conventional systems applications to manage
the inter-node trusted channels, as well as other, unanticipated operators that clients of the

backplane wish to deploy.

3.2.1 Hardware Assumptions

We described the capabilities of this emerging class of applications earlier, so we move
now to describing the hardware we assume when discussing this work. To support this

application class, a system must provide:

1. Separate hardware-enforced partitions for secure and non-secure software domains.

2. Sufficient instruction set architecture (ISA) support inside the TEE context to run a full
OS and system software stack.

3. Direct access to I/O devices inside the TEE context and the ability to isolate I/O devices
from the untrusted partition.

4. Configurable allocation of system resources to partitions, including CPU cores, system
memory, peripherals, interrupt space, etc.

5. Hardware components needed to support trusted, secure boot and remote attestation ca-
pabilities, such as trusted platform modules (TPMs), co-processors, physical unclonable

function (PUF) hardware, etc.

These requirements are reasonable and found in current TEE hardware architectures. In
particular, ARM TrustZone is a suitable candidate and its widespread use in IoT/edge sys-
tems means that our hardware requirements are already met by many commodity hardware

platforms [90].

3.2.2 System Co-existence

Current TEEs such as OP-TEE, Android Trusty, and ANDIX model the relationship

between the two partitions similarly to the application-kernel or VM-hypervisor relationship,

28

where a context switch from partition A to partition B means that a CPU context switch
will occur, jumping to trusted firmware that will save A’s context, load B’s previously-saved
context into the CPU, and then jump to partition B’s code to handle whatever request was
made. This follows well the current model of trusted services as being available behind some
sort of RPC mechanism. While a good fit for discrete service requests, this model creates
problems as the number of service requests increases and when trusted services need to run
asynchronously in the background. Such “world switches”, depending on the architecture,
usually require a call down to firmware to securely handle the world switch. This firmware
interposition additionally means that service request payloads must be marshaled in some
way by the firmware, potentially resulting in unnecessary copies and a longer control path.

As the responsibilities of the trusted partition grow, confining trusted processing to
explicit service requests will not be enough. Periodic wake-ups to service ongoing work, mul-
tiprocessing, and other traditional time-sharing techniques are necessary to support general-
purpose applications. However, the existing TEE model does not sufficiently support this
use-case. We instead fully embrace the notion of horizontal system resource partitioning.
A LWK TEE OS occupies its own resource partition on the system, fully owning those re-
sources and managing them as it sees fit, including regions of memory, CPU cores, as well
as its own share of the interrupt controller and any relevant devices. This requires that
the existing FWK OS be capable of being configured without knowledge of some fraction of
system resources, as well as willingly ignoring that hardware which cannot be fully hidden
from the FWK’s view.

In other words, a trusted OS must be able to “co-exist” with the untrusted OS, echoing
previous work done on multi-kernel environments [85]. The responsibility of a kernel to
provide hardware functionality to userspace requires the maintenance of valid hardware
state. Consider interrupt routing: each interrupt must be configured for security state,
which core to route to, and what priority it has. The naive approach means that the final
configuration of the interrupt controller is order-dependent, with the later configuration
overwriting the previous. This can also lead to active contention over configuration, each
kernel attempting to “recover” from what it perceives as an invalid configuration. Further,

not all transitions between arbitrary states of hardware are valid and this active contention

29

could lead to crashes. This demonstrates two problems: even ordinary capabilities like
interrupts are subject to contention, and this contention can fully impede the intended
functionality. As the single-kernel model is dominant, kernels behave “greedily,” configuring
available hardware as the sole authority, when the way to avoid contention is for kernels to

act instead conservatively.

3.2.3 Partition Boundaries and Messaging: the Interkernel

A critical topic of discussion is how the trusted/untrusted partitioning is enforced and
crossed to request and fulfill services. Conventional TEEs employ one of several strategies,
including memory-range protection, firmware intercession, and internal device configuration.
Our LWK TEE design uses the same underlying hardware, but promotes the trusted partition
to an equal partner in the system design. Rather than being managed by the untrusted
OS which is moderated by the secure, trusted firmware, we treat the partition boundary
similar to existing multikernel approaches, which blends traditional single-kernel, multi-core
processing with remote messaging strategies, giving a model that resembles traditional inter-
process communication between two applications. Explicitly, our design supposes the two
partitions are able to directly message one another, bidirectionally.

Allowing the untrusted partition to initiate a message exchange is not without danger
and must be carefully considered to avoid information leakage or allowing an attacker to
modify control flow. Thus, the interkernel messaging channel cannot be as general as a
typical kernel’s “cross-call” mechanism where arbitrary functions can be triggered by one
core messaging another core, a ubiquitous operation for multicore kernels today. However, a
robust and generic message channel is required to support the wide variety of message types
and payloads that applications and drivers may want to exchange. Any underlying channel
must be agnostic to its use and capable of transmitting arbitrary amounts of data without

knowing anything about that data.

30

3.3 KaTZe: The Kitten LWK TEE OS

To realize our design we extend the Kitten lightweight kernel. [79] Kitten is a lightweight
kernel originally developed for high-performance computing. As a lightweight kernel its
design emphasizes simplicity and the absence of abstraction layers which take decisions
away from applications. This simplicity and flexibility has been leveraged in other work,
including in performance isolation [75], virtualization [28], and hardware co-design [29], as
well as trust in ARM platforms [47].

We developed extensions to Kitten to make it suitable as a TEE OS which we call
KaTZe. These extensions include drivers for necessary TrustZone components as well as
kernel components to integrate with the underlying firmware, which in our case is ARM
TF-A [100]. TF-A is ARM’s trusted firmware implementation that is used by many existing
TEE OSes for the ARM architecture. A central obstacle with the existing architecture
is that the TEE OS is treated as “ephemeral”. To address this, we partition the system
statically and allocate most CPU cores to KaTZe, and allocate only few, possibly down to
one, cores to the untrusted OS as a service core. Further, the GlobalPlatform notion of
TEEs is embedded into the design of the TF-A firmware and must be modified to reflect this
new architecture; fundamental capabilities are currently excluded from the trusted partition.
Finally, workloads in IoT sensing environments such as AI models can require large amounts
of working memory, so we allocate the majority of memory to KaTZe, confining Linux to a
few hundred megabytes.

The context of our work is on middle-powered, single-board ARM computers (SBCs) such
as Raspberry Pis. As opposed to higher-powered server- or desktop-class computers with
advanced hardware, our target systems often have some but not all of the “typical” hardware
features, or have less capable versions of them, such as replacing a fully-featured MMU with
a simpler, flat region-based memory protection mechanism. On the other hand, our target
systems are significantly more capable than the lowest-end of micro-controllers that typically
lack hardware security features, have reduced architectural register sizes, and may even lack
features like an MMU entirely. Our target systems, while lower-powered, are not expected

to be power-constrained, and our aim is to enable as much data processing to be done locally

31

as is possible without offloading to more capable servers. In our work we have selected the
Rockpro64 single-board computer (SBC), which is equipped with the RK3399 system-on-
chip (SoC). We have a port of KaTZe system with Linux as untrusted partition OS on both
QEMU and the Rockpro64 SBC, using the existing bootloader chain of almost-unmodified
U-Boot and Trusted Firmware A (TF-A) that we modified to support a general-purpose
OS. While doing our research, QEMU was not well-suited to model TrustZone hardware

capabilities, so our work was done primarily on actual hardware.

3.3.1 Resource efficiency and TCB simplicity

By design, LWKSs present a smaller TCB and make simpler, more efficient decisions about
resource usage than FWKs, where increased functionality and more exotic requirements re-
sult in more sophisticated mechanisms. In particular, KaTZe makes several choices that
make reasoning about the current state of the OS easier, as well as having a smaller resource
footprint. For example, a KaTZe process’s memory is pre-allocated, bound to that context,
and is linear and contiguous, as opposed to Linux’s highly fragmentary demand-paging sys-
tem which emphasizes dense multiprocessing, memory usage, and flexibility. KaTZe utilizes
a non-load-balancing, round-robin, pre-emptive scheduler that further simplifies OS state as
compared to Linux’s Completely Fair Scheduler. Finally, KaTZe omits the fully-developed
driver system that’s replete with useful and convenient abstractions to ease driver develop-
ment; while these features are useful in general-purpose contexts, they are largely unnecessary
for specialized, IoT contexts and introduce unneeded complexity and abstraction cost.

Linux’s complexity both in kernel and driver design results in an increased attack surface
and a corresponding increase in the number of common and severe attacks. [39]. We make
a qualitative argument that KaTZe’s simplicity improves security [2], and as evidence we
present several TCB measurements that can be used to compare the complexity of different
trusted kernels: lines of code in the core kernel as measured by the sloccount program [110],
the number of syscalls the kernel exposes to userspace applications, and the overall size of
the final kernel executable, shown in Table 2. The table shows that KaTZe is much more

comparable to an existing TEE OS than to Linux in terms of footprint. For fairness this

32

Table 2: TCB measurements for trusted kernel candidates.

oS ELF Size LOC | No. Syscalls
Linux 6.6 30M 7260,000 605
OP-TEE 4.5M 8,000 N/A®
seL4 | 574K [21] | 8,700 11°
KaTZe 3.4M 718,000 97

20OP-TEE exposes a different set of syscalls that do not have POSIX-like functionality.
*Implementations of the L4 series of microkernels vary slightly in syscall counts.

count includes only the core kernel counts, excluding code that provides specific platform
support and device drivers.

Importantly, ports of Linux drivers to KaTZe do not necessarily increase in complexity
or size due to the absence of Linux’s substantial structure and abstractions; the Kitten kernel
port of Linux’s I12C controller driver for the RK3399 yields “720 LOC versus the original’s
~840.

OP-TEE lacks an I12C driver to compare against, and moreover these numbers do not
capture the overhead of developing applications against the OP-TEE trusted application
(TA) framework, which is unnecessary in either Linux or KaTZe. OP-TEE does not model
conventional userspace applications and so we skip counting its syscalls. Finally, sel.4 as used
in MicroTEE and the similar HYDRA [21] claims to contain 8,700 lines of code in its kernel.
While these numbers are approximate and qualitative, we believe they are reasonable proxies
and illustrate the point that operating system capability and richness do not always require
the weight and complexity baggage that FWKs have. On the contrary, KaTZe provides

these things in a similar footprint to existing microkernels and constrained TEE OSes.

3.3.2 Secure Interrupts

Interrupts are a critical component of modern systems, used widely for multicore kernels
and to enable asynchronous I/O operations to reduce busy-waiting, and pre-emptive mul-
titasking is the model assumed by most applications. To support interrupts in the trusted

partition, the system interrupt controller must be able to enforce security policy on inter-

33

rupts to prevent attacks, most obviously denial-of-service attacks where an attacker sends
a flood of interrupts to the cores of the trusted partition, but also “misdirection” attacks
where the attacker sends spurious interrupts that trigger memory reads to force the target

to read compromised data.

Figure 3: The GIC’s hierarchical structure means the two partitions may compete

for control of the GIC distributor’s configuration. Diagram from ARM [7]

In the ARM Generic Interrupt Controller (GIC) architecture, devices that request service
via interrupts have their interrupts routed to the system-wide distributor first, which then
routes it to the appropriate core via the specific redistributor for handling. This configuration
is another point of contention in the GIC, since the distributor configuration is shared state
between the trust partitions. Fortunately, the GIC itself implements security state-based
access controls that prevent a non-secure but privileged adversary from re-routing secure
interrupts to itself. The structure of the GIC and the shared configuration state is shown in
Figure 3.

The most important observation to be made is how strongly the assumption of being
the only kernel is built into Linux. We describe this implementation difficulty to detail
that many aspects of system hardware management are not typically shared, requiring us
to rework existing assumptions. The reference interrupt controller for the ARM platform,
the Generic Interrupt Controller (GIC), is TrustZone-capable from version 3 onward. This
interrupt controller is widespread on the IoT class of ARM systems, including the RK3399
SoC we use. The GIC’s structure is hierarchical, with a single distributor at the system

level and a redistributor at each core. Per the specifications the GIC presents a different

34

configuration register to untrusted kernel software for configuration, but in our prototype
model we unexpectedly found that the untrusted partition Linux kernel was able to read
and write bits in the register that should only be accessible to the trusted partition. As a
result, we were required to patch the Linux kernel to avoid resetting the GIC distributor
configuration, as the trusted partition initializes before the untrusted one. During this
startup KaTZe configures the GIC distributor with a configuration, that, if cleared, is invalid,
which is described by ARM as an “unpredictable” state. In other words, undefined behavior.
However, the existing Linux GIC code assumes that there is only one security state on the

system [117]. To remedy this we apply a 2-line patch to the Linux GIC code to prevent this.

3.3.3 The Interkernel Channel

To implement our cross-partition message-passing system, the “interkernel,” we opt for
a straightforward design using two unidirectional memory buffers with a write lock. The
size of each buffer may vary independently and the design supports concurrent messages by
configuring the number of buffer pairs. As the two endpoints of the channel reside on different
cores, we supplement the write lock with interrupt signaling to avoid busy-waiting on the lock
itself, for which we use an inter-processor interrupt (IPI). Both buffers must be assigned to
the untrusted partition, as the version of the TrustZone controller present on our development
system does not support access properties on protected ranges, though this feature does exist
in newer versions of the TrustZone controller [6]. This would further improve security by
allowing write-but-not-read permissions for outgoing data in each direction, as well as read-
but-not-write permissions for incoming data. However, this is an optimization outside the
scope of this work.

At minimum our signaling system requires a single number assignment from the hard-
ware, though we could use individual, unique numbers as an optimization. This provides
compatibility with essentially all IPI-enabled platforms. On platforms like x86, this optimiza-
tion is possible. However, on GIC-equipped ARM platforms IPIs cannot have an arbitrary
interrupt number, and instead can use only a limited range; 8 hardware IPI numbers are

available. Currently, Linux uses 7 of these interrupts for its own purposes, presumably for

35

the exact optimization mentioned. Unfortunately, Linux on the ARM architecture does not
allow numbers in this range to be registered by kernel modules. The remedy for this is one
of the two patches we make to the Linux kernel over the course of this work. We patch the
kernel so that our interkernel channel message handler takes up the last IPI number, and we
multiplex interkernel services on this number. This limitation represents an opportunity for
hardware to more explicitly support tighter multi-kernel integration, since more IPI numbers
would allow more services to be directly identified by their interrupt number and thereby
eliminate the need for the kernel to access memory to determine which handler to invoke.

Clock Service 12C Service Sockets Service

struct sock_message {
int cmd_id;

int sock_id;

int buf[buf_len];

struct clock_message { struct i2c_message {
int cmd_id; int cmd_id;
int clock_ptr; int buf[buf_len];

} 1 };

ik_send_message(&msg);

==

Unidirectional Memory
Buffers

Figure 4: The interkernel provides a generic message-passing

system to implement arbitrary services on top.

The design of the interkernel channel and its services is shown in Figure 4. The channel
is agnostic to the messages passing across it, and we use it to implement services needed to
support security non-critical functionality. We have implemented a simple memory mapping
functionality that allows Linux and KaTZe processes to share memory, as well as the much
more substantial socket service. As the interkernel allows arbitrary messages between the
kernels, it can be used to delegate driver functionality from KaTZe to Linux when the security

of that functionality is unimportant, which will be discussed in later chapters.

36

3.3.3.1 Sockets

Socket-based communication is supported for

KaTZe Application

KaTZe applications. The socket service acts pri-

marily by forwarding messages to the correspond-

ing Linux kernel socket functions, as shown in Fig-

socket calls to Linux, this apparent loss of security — pelegated
Socket
is acceptable thanks to our “armoring the data” Ops

ure 5. Though this exposes the contents of all

design focus which requires us to recognize that

even memory channels are shared with potential
Socket Ops

adversaries and thus are untrustworthy. Indeed, kern_send), | kem_bind0) kern_socket)

the interkernel channel is seen analogously to how
m Sock 3 | Sock 4
a typical OS might see the network socket: the end

of the “safety perimeter.” The remedy for this in

Figure 5: KaTZe provides socket

our case is the same as in the wider networking operations by delegating them to

case, which is to use a protocol like TLS to es- the Linux kernel.
tablish a secure channel using application-specific

cryptographic identities. Socket asynchronous operations are also supported, which paves
the way for listening servers on KaTZe, including web servers. As with ordinary, intra-kernel
sockets, a KaTZe program and Linux program can communicate using the socket system.
Though this relaxed application composition softens the barrier between trust partitions
at the application level, we recall the view that the two partitions are like two networked

machines; it is not part of an application’s purview to know whether a remote partner is

running in a compromised environment, only that the application can attest its own identity.

37

3.4 Evaluation

As previous work has demonstrated that the Kitten kernel reaches performance parity
with or exceeds Linux [29, 75] on the ARM architecture [47] in many applications, we focus
our evaluations on demonstrations of capability as well as the performance impact of Trust-
Zone security controls. We investigate the difficulty of running typical IoT application stacks.
Exhaustively testing all applications is of course impossible and so we aim to cover a large
portion of the possible cases by targeting a “LAMP stack” of applications to demonstrate
general support for applications. Comparatively specialized applications such as computer

vision model frameworks are also supported, which supports KaTZe’s generality.

3.4.1 TrustZone Performance

To examine the possible overhead that utilizing access control had on performance, we
ran several benchmarks aimed at quantifying the memory performance overhead. We used
the STREAM [61] and RandomAccess (GUPS) [44] benchmarks, commonly used for memory
performance evaluations in the HPC community. STREAM tests sequential memory band-
width, while RandomAccess tests memory updates per second. STREAM was run with an
array size of 600,000 to saturate the RK3399’s 1MB L2 cache. STREAM results in Figure 6
show no appreciable difference in any of the subtests. RandomAccess was run with an array
length of 64M, yielding a 512M-sized array, results shown in Figure 7. These results also

demonstrated no appreciable difference when TrustZone memory protection was enabled.

3.4.2 Application Support and Environment Familiarity

KaTZe provides a Linux-like environment with broad application compatibility, and
Ka'TZe supports both statically and dynamically linked applications. While some advanced
syscalls and kernel functionality are not available, many relevant applications run unmodi-
fied, and existing, popular IPC mechanisms are available. To demonstrate this, we examine
application classes relevant to a trusted IoT setting, including databases, web servers, ML

libraries, and WebAssembly runtimes. We describe the support that each class of appli-

38

100

NO TrustZone ' s
TrustZone wummm
80

60 | l
40 |]
0

=
o
a

STREAM Subtest

Figure 6: TrustZone memory protection imposes no overhead in the STREAM benchmarks.

MB/s

a[eds
peu|

Adon

=
(=
o

'NO TrustZone s
TrustZone s

= (o)) (o0}
o o o

Kilo Updates Per Second (KUPS)
N
o

o

RandomAccess

Figure 7: TrustZone memory protection imposes no overhead in the RandomAccess (GUPS)

benchmarks.

39

cations requires from the OS environment and compare the support that KaTZe provides
to that which Linux provides as well as existing ARM TEE OSes. To represent each class
we selected an application suitable for the embedded/IoT environment. We examined the
SQLite3 database system [96], the Mongoose web server [17], the SOD vision library [82],
and the wasm3 WebAssembly runtime [104]. While not exhaustive, these applications are in

general more lightweight than peers in their classes, but are still used in practice.

3.4.2.1 Mongoose Webserver

The Mongoose [17] webserver is a highly configurable, adaptable webserver suitable for
use in embedded environments, but is nonetheless well-featured and capable. Designed for
embedded environments that often have widely different capabilities at the OS level, Mon-
goose can be configured with or without support for many features, such as what underlying
event polling interface to use and the underlying socket implementation. The principle
demands Mongoose makes on the OS are indeed the event polling and socket implementa-
tions. Supporting this required a poll() implementation to extend our cross-kernel socket
implementation. With this support, Mongoose works without further configuration. We
describe Mongoose’s performance on KaTZe below in Section 3.4.3.2. We describe our use

of Mongoose in a complete application example below in Section 3.4.3.

3.4.2.2 SQLite3 Database

SQLite3 [96] is a widespread database system that can persist databases to files, being
much simpler than other fully-featured database programs. SQLite3 describes itself as appro-
priate for embedded situations where traffic is in the neighborhood of 100,000 hits per day.
Given the context of IoT sensing we expect this to be a comparable amount of requests satis-
fied, as this allows for a single-digit number of requests per second. For database persistence,
SQLite3 requires filesystem support, similar to any other persistent database. Additionally,
SQLite3 uses the filesystem to implement concurrency control, but can be configured with
many different file locking methods. Again considering the low-concurrency nature of IoT, we

configured SQLite3 with £lock support, which is a simpler POSIX file-locking interface that

40

operates at the file granularity. With an existing filesystem layer, extending KaTZe’s filesys-
tem support for file-locking was straightforward. We describe the performance of SQLite3’s
included benchmark, speedtestl, below in Section 3.4.3.1. We describe our use of SQLite3

in a complete application example below in Section 3.4.3.

3.4.2.3 SOD

SOD ([82] is a computer vision framework targeted at embedded contexts that also has
a broad feature support. Preliminarily we used strace to see the syscall requirements for
each and confirmed that KaTZe supports the necessary calls. We used previously-captured
photographs which corresponds to a backplane node sending a captured frame to another,
more powerful node. We tested SOD’s CNN capability using the tiny20.sod model weights
and the :fast model, with our runs having a memory footprint of 181 megabytes and yields

identical object detection results as on Linux.

3.4.2.4 Mmap-based IPC

We also implemented mmap capabilities that allow an untrusted application and trusted
application to directly share a region of memory, in this case the interkernel buffers them-
selves, which is realized as a Linux kernel module and Kitten kernel module. On top of
this we implemented a simple ping-pong application as a test of its functionality. These re-
sults demonstrate that relevant IoT applications can be run without a drop in performance
and either without modification or with minimal modification. Further, we demonstrate
that flexible IPC mechanisms are possible with LWKs, providing alternatives to the exist-
ing trusted service architecture. We believe the examined applications constitute a class of
relevant applications to lower-end IoT sensing and Al workloads and help make the case for

LWKs as performant workload systems.

41

3.4.2.5 WebAssembly Runtime: wasm3

WebAssembly [32] is gaining popularity as a solution for security, attestation, and ap-
plication portability [68, 93]. Many WebAssembly runtimes emphasize security features like
sandboxing and capability management, with research using these features to provide se-
curity inside TEE environments, specifically work like WaTZ [68]. WaTZ details how a
WebAssembly runtime can be extended to provide remote attestation capabilities of running
WebAssembly blobs. To demonstrate the generality of our approach we ran the popular
wasm3 runtime [104]. We built SQLite3 for WebAssembly and ran the speedtestl bench-

mark again to demonstrate the runtime’s functionality.

3.4.3 Prototype Application and Benchmarks

KaTZe supports many relevant applications without modification, and many others with
a small compatibility layer provided by the OS. To show this we identified several classes
of applications that are relevant to trusted IoT workloads and examined what kind of sup-
port they require of the underlying OS, such as networking, filesystem, or advanced syscall
support.

To demonstrate this we built an integrated example leveraging several of these. We built
an individual node that would be part of a distributed application described in one of the
use cases above, as depicted in Figure 8. In our system, we have a multiprocessing stack,
with a sampling application that samples the sensor at regular intervals. The sensor samples
are inserted into a SQLite3 database instance. To provide access to the database we used
the Mongoose webserver. In our prototype, curl on the co-tenant Linux kernel is used to
submit SQL queries to the webserver which are sanitized before executing. The results are
sent back in JSON format. As the underlying socket system is managed by Linux, we are
not limited to intra-node communication and this service could be exposed to the broader
network.

This prototype demonstrates that typical, sensor-enabled IoT workloads are possible
without substantial re-engineering work. With support for scheduling, filesystems, sockets,

and secure I/O, KaTZe enables this secure sensing modality.

42

Untrusted Trusted

e

Logging

Trusted Temperature &E

Client

> REST API
Byte code
S —— Web server Database@ blobs
Mongoose| sqlite
HTTP client e D | D)

WASM

Trusted Application
Socket I/O\File 1/0,
mmap, Process con

e Message Passing
(Linux) Channel

Device driver

Hardware Platform

(wasm3)

vy

Platform Management Hardware Data Channels
(clocks, power, signal routing) (IOMMU, DMA Engines)

Sensor
(Camera, temperature, microphone, etc.)

Figure 8: KaTZe supports a typical POSIX ABI “LAMP stack,” using

split drivers for sensors and delegated sockets for networking.

3.4.3.1 SQLite3 speedtestl

SQLite3 includes a benchmark program called speedtestl. While not as exhaustive as
benchmarks like TPC-H [98], we are primarily concerned with the performance difference
between KaTZe and Linux. Considering this benchmark is used by SQLite3 themselves to
identify performance and feature regressions, we feel it is an adequate benchmark for com-
paring the two OSes. We ran the speedtestl benchmark program on both Linux and KaTZe,
both using an in-memory filesystem. These tests were run with the following parameters
that specify the size the test: ——shrink-memory --reprepare --stats --heap 10000000
64 --journal wal --size 5. We also ran the benchmark with --size 50 to evaluate it
at a larger database size. The results are shown in Figure 9. These results demonstrate that
KaTZe can take advantage of the same application-level optimizations that are available to
Linux, as in most subtests we observe no performance dropoff. The only test where Linux

substantially outperforms is test 310, which is 5000 four-way joins.

43

3.4.3.2 Mongoose performance: sockets

To profile the performance of our interkernel socket implementation that provides Linux
socket capabilities to KaTZe-hosted programs, we constructed a few simple benchmarks
measuring request latency and raw throughput. To measure latency we time how long it
takes for curl on Linux to receive a reply from Mongoose on KaTZe. To measure throughput
we time how long it takes for curl on Linux to fully receive a 1MB and a 10MB file served
by Mongoose. The results are shown in Figure 10. Connection latency is low at an average
of 5.4ms, the average 1M transfer time is 0.69s or around 1.5MB/s, and the 10M transfer
average time is 7.41s or around 1.41MB/s. Our current implementation of the interkernel
channel uses a comparatively small buffer for transfers at only a single 4KB-page, meaning

that transfers take many rounds.

N
(%2}

"KaTZe mmmem’ T T T T T T T TKATZR
wlal Linux w LinUX m
2 220]

812, 3
2 4 2
o | 015
£08}| E
c c
506 §19}
© ©
©0.4 | =
g g 51
| i °
0 Hlln. 0 l
DSISHSTHSTSTSTNT ST ST TIVTIVE NN [6516) [{a] (o) [e v e e el D LA DS DTS S L S TS TS TN T I T RN S) 454y [TeT o)
OENWALAJTIOONNWORW-AUIDNNWORENOROENG WO OENWALARMIOONNOORWAUTIONROORNORORENO
QOO0 ONUOOROO00000000O000000000000 OOO0OONIIOORO000000000000000000000
speedtestl subtest (size 5) speedtestl subtest (size 50)

Figure 9: KaTZe benefits from the same application optimizations that Linux does for

SQLite3’s speedtestl benchmark.

3.4.4 Conclusion

This evaluation demonstrates Research Insights 1 and 2, that a TEE OS can provide
rich application support without serious performance penalties. By splitting the difference
between feature-completeness and maximum security, LWKs can satisfy the requirements

posed by rich application stacks such as the privacy backplane.

44

S

),
o
'_I
o

15 z

%6 S 6|

= A

c g |

So —o 1-Mlom

Figure 10: KaTZe’s socket implementation provides reasonable networking performance both

in connection latency and throughput with full delegation to Linux.

45

4.0 Secure I/O Stack with Lightweight Kernels

Providing secure access to I/O resources is a complex issue within trusted computing,.
The various combinations of the division of responsibilities between the trust domains, the
available TEE hardware, and the architecture of the system software means there is no
one correct approach to I/O. On some platforms providing direct access to I/O peripherals
is impossible due to the architecture of the TEE hardware itself, but in other places the
hardware supports it but the predominant architecture of the system as a whole, i.e. the
relationship between the TEE-enabled partition and the untrusted partition, stand in the
way. The split of responsibilities further muddies the waters because the hardware platform
must support secure partitioning of resources in the first place. We aim to show that current
TEE platforms provide adequate architectural support for a direct access model, wherein
the trusted partition directly owns the needed hardware resources. Further, this is possible
without simply “re-implementing” the complexity and bloat of mainstream, general-purpose
kernels that already support these devices. We evaluate this chapter’s work in terms of func-
tionality instead of performance by porting several existing Linux device drivers needed for
secure I/O on SoC-based platforms and then testing them using a similar image recognition
pipeline, but now on KaTZe-captured images within the TEE. The approach we use in the
evaluation demonstrates a general capability to borrow drivers from Linux and is applicable

to many other SoC-based platforms and on-board devices.

4.1 Background and Related Work

The basic problem that we face regarding I/O is how to establish trust that the data
acquired by the I/O device, be it a sensor or network device, is confidential and integral. As
discussed in Section 2, in the context of multiple software partitions on the same hardware,
availability is hard to achieve—without an interposed hypervisor or something similar there’s

nothing stopping the untrusted partition from turning off the machine as a trivial availability

46

attack. As a result, our main focuses are on confidentiality and integrity. To establish a

secure channel there are, in principle, only two options:

1. Using a hardware channel with native security support, or

2. creating a virtual hardware channel that implements some kind of security.

The first option can be described as “armoring the wire” and in our situation refers
to preventing access to the bus carrying sensitive data by partition enforcement hardware
and policies. The other option is to encrypt data in some way, with the best-known and
most obvious application of this being TLS/SSL connections—given the prerequisite of valid

identities, a secure channel can be established on top of an insecure one.

4.1.1 Protecting the data

Seemingly the more preferable option, protecting the data itself is difficult to achieve on
a local node. This approach requires each conversation party to be able to send arbitrary
messages, sending the ciphertext of the message instead of the plaintext. That is, we must
use specialized devices that are capable of encrypting outgoing data as it travels over the
untrusted bus, such as McCune’s work on the Bumpy system[64]. This creates a second
problem of key provisioning: how to establish identities. In the case of an untrusted, adver-
sarial hardware co-tenant, this would require a “secure provisioning” step that occurs before
deployment by a trusted third party, remembering that the worst case is when the operator
of the system is adversarial and seeks to subvert system security with the use of untrusted
system partition. Thus, this approach is not generally applicable to a SoC environment
where we seek to protect the data on system busses from other, on-chip adversaries. Some
systems have taken a hybrid approach, such as HETEE [116], where encrypted messages are
sent to a secure hardware enclave that temporarily takes full control of a GPU to provide
secure acceleration. This differs slightly from what we have described here in that while
the message is encrypted, once in the enclave the message is decrypted and passes in clear-
text over the PCle bus between the enclave and GPU itself. Fidelius [22] models a system
with these “smart peripherals” with its man-in-the-middle technique whereby single-board

computers are interposed between I/O peripherals like the keyboard and display and act as

47

the “security controller” for that device on its way to the main computer’s SGX hardware
enclave. Finally, Graviton [105] augments the GPU architecture itself to enable encrypted

communication.

4.1.2 Protecting the channel

The more common approach to establishing trusted data flow within a single hardware
system is by protecting the channel, i.e. policy-based, hardware-enforced access controls.
These can take various forms depending on the resource they are protecting, including
page table attributes, hardware that exposes different functionality depending on security
mode/status, and direct intervention on interconnect transactions. This heterogeneity leads
to a rather large variety of implementations depending on the particular problem and hard-
ware platform.

Weiser’s SGXIO system [108] provides a secure I/O path to applications running on an
untrusted OS by exposing wvirtual devices which issue requests to SGX I/O enclaves which
control the devices. This approach reduces the TCB by leaving the user application out
of the trusted partition, but introduces a virtualization overhead at the same time. They
acknowledge that a fully-trusted OS is yet-unachieved, largely because of the architectural
limitations of SGX itself, which are not present with TrustZone.

ARM TrustZone presents a more flexible security envelope as compared to Intel SGX.
The relaxed architecture of TrustZone means that a complete OS can run within TrustZone
with comparatively little modification and that secure OS can directly own devices and run
user applications, in contrast to SGXIO’s untrusted OS with trusted driver enclaves.

As existing work shows, a device’s dataflow must be wholly owned by a trusted actor to
be considered trusted. The main questions are whether the device is self-owned, as securing
the data suggests, where the device itself is the trusted actor, and whether the pathway for
trusted data passes in some way through the untrusted OS. Current work largely takes the
approaches of SGXIO or OP-TEE, where applications live in an untrusted space and issue
requests for service to trusted enclaves, which may own devices.

Principally, what we are suggesting is that the trusted actor in this case be a full OS which

48

wholly owns the devices and directly hosts user applications. This scheme is necessary to

provide Guarantee 1 from the threat model, that trusted software is always an intermediary

between a sensor device and the untrusted world. Existing service-type OSes typically own as

little hardware as possible to reduce attack surface and thus preclude themselves from hosting

unmodified, general user applications. Qur proposed architecture is shown in Figure 11.
Moreover, TrustZone’s architectural capa-

7
bilities often invites dismissal of the I/O prob- W _ Trusted
chitecture

lem; the hardware is capable of controlling

Untrusted

. . i 1 Trustlet | Trustlet || Trustlet
access to devices, and fundamentally nothing Application

prevents a TrustZone OS from using these ca- Untrusted
(0153

Control and Data
Planes

Trusted OS

pabilities to provide I/0O, so many TEE OSes

consider I/O to be a secondary concern. Main- ~KOsSecure iy

stream projects like OP-TEE or Trusty can, in

principle, support devices, but works [31] have //'////)9/';'//;/0 Architecture

noted that despite considerable project matu- / Unirusted ”:’:_‘ Trusted
Application

. Service |~
rity, few public commodity device drivers ex- %
Y P y m/[
ist. Further, implementing drivers for the wide Untrusted ? i

Data Plane

Trusted OS

range of devices exposed through current SoCs /1 ~—
would greatly expand the size of the TCB and
the quick development of SoCs would see any Figure 11: In our i)roposed architec-
trusted OS that attempts to support all rele- ture sensor data is securely sent to
vant platforms approach Linux in complexity. the trusted application.

Additionally, existing and successful TEE ar-

chitectures for other platforms than TrustZone, such as Graphene-SGX [18] do not address

the I/O problem, as Intel SGX did not provide the ability to directly protect I/O assets.

49

4.2 Trusting I/O: Secure Driver Stacks

Fully realizing the potential of trusted, general-purpose computing requires direct, se-
cure access to peripherals. Applications like computer vision require continuous video datas-
treams, where even relatively low resolutions such as 800 by 600 will reach sustained rates
in the MB/s, a non-trivial load for the SBC-class device. To secure the datastream, the

underlying system architecture needs to have the following properties:

1. The hardware architecture must support discriminating between trusted and untrusted
transactions on the relevant bus.

2. The hardware architecture must support policy-based enforcement on relevant busses.

3. The performance of the bus must not be significantly reduced by utilizing the hardware

architecture’s trust capabilities.

The last requirement precludes the use of certain TEE architectures, such as Intel’s
SGXvl, thanks to the in-place memory encryption that protects the trusted partition’s
memory from bus-level attacks, but substantially limits the available memory footprint and
performance [12]. Architectures like TrustZone [81] or the proposed RISC-V Keystone [50]
and Penglai [23] systems that are capable of transparently discriminating, i.e. with no
overhead, support the KaTZe system.

Even determining whether some hardware is compatible is not always straightforward:
vendors generally are reluctant to provide public device drivers for their TEE hardware,
arguing that releasing this source would be a security concern or alternatively that they
constitute a competitive advantage they don’t want to relinquish. [84, 65]. Whatever the
reason, the extant TEEs have little in the way of publicly-available device support. As
rapidly-evolving commercial products, OEMs are not particularly motivated to divulge every
detail about their hardware to curious hackers and academics [66]. Generally documentation
is of poor quality and can be limited to vague, brief descriptions of registers [86]. Sometimes
documentation about hardware is completely absent in the case of smaller, more specialized
devices like on-chip hardware blocks. Yet still sometimes documentation exists but is not

distributed for public consumption, only accessible to those with an NDA, leaving only

50

the OEM’s provided Linux driver as the sole reference for the device [19]. These poorly-
documented Linux drivers are a substantial hurdle for IoT systems to create secure I/O
paths to devices. To establish a secure path, trusted OS developers must either write device
drivers from scant or no documentation, or port the existing drivers. For simple devices like
UARTs this is not a huge hurdle, but typical IoT platforms today often include complex
on-chip hardware like multi-stage image pipelines, cameras, and GPUs.

Perhaps the main advantage that a FWK like Linux has in this regard is its abundant
inventory of device drivers. Many device manufacturers do supply drivers specifically for
use with Linux to improve with adoption and continue to provide support for these devices
by assigning them to open-source software support companies like Collabora and Linaro. In
cases where the manufacturer does not provide the source, they may still supply a driver, as
is the case with NVIDIA’s GPUs for which a binary blob driver is supplied. In other, more
fortunate, cases the manufacturer initially supplies a closed-source driver but later recognizes
the utility in supporting an open-source one, as was the case with ARM’s Mali GPU drivers.

Fortunately, it is possible to leverage previous work of the community by re-using existing
Linux drivers. There are two cases to consider: closed- and open-source drivers. In the case
of closed-source drivers, the target kernel must emulate Linux at a fairly low level and with
fairly high fidelity. Further, re-using built drivers means emulating version-specific behavior,
which can include arbitrary dependencies on other kernel systems. As a monolithic kernel,
Linux drivers are integral to the kernel, and although Linux overall has trended toward design
decisions that force kernel drivers to use specific, driver-specific kernel interfaces, drivers still
have enormous power and access. The deep layers of hardware abstraction present in the
Linux device framework suggest that any kernel that could support an arbitrary Linux device
driver will resemble a hypervisor hosting a Linux VM to drive these devices, an approach
that has in fact been used to forward-port drivers for critical legacy devices [51], which is
detailed in Figure 12.

Now we turn to open-source device drivers. However, open-source does not mean good
or available documentation. While a driver may be provided, there may be little to no
supporting documentation to ease the porting process, such as technical reference manuals

or code comments. In many cases, vendor-provided drivers have “magic numbers,” referring

51

B Kernel extensions App | App | App

[] Reused drivers Client
- disk og

ot
[

DD/OS ’ ? DD/OS

disk network
subsystem subsystem

Figure 12: Re-using drivers can be achieved with the “sledgehammer”
approach that hosts a complete VM, here denoted “DD/OS”. Figure
from [51].

to opaque values written to device registers which may themselves be undocumented. This
can be done for benign reasons like loading an initial state after reset, encoded in the driver as
an opaque bytestring. However, this practice can also be used to obscure device functionality,
such as hiding the location of sensitive debug registers or limiting descriptions of functionality
to NDA-exclusive manuals, which often pose problems for non-industrial entities to comply

with.

4.2.1 Devices and internal complexity

Devices on SoC platforms are characterized by substantial internal complexity. Although
some devices are simple, with control and data on a single, low-bandwidth bus that can be
polled at a comparatively low frequency to function in a trusted-sensing environment, most
are not. For these simpler devices the “lift-and-shift” approach where as little code as
possible is changed is appropriate here, given the fewer hardware abstraction layers between
the raw device and the Linux userspace. By contrast, sophisticated devices such as cameras

and image signal processors (ISPs) can be very complex, with complex internal topologies

52

AXI

Sensor 1

D‘E‘:: Multi-exposure

DMA

=

Sensor 8

AXI

I

RAW
processing

RAW noise
reduction

Demosaic Color

management

HDR precision
management

Black level Sinter™ i White
=
Defect pixel Mesh Color noise
correction shading reduction

Color space
conversion
Down
sampling

Output
formatting

A'\F. ' AE AWB LUTs Configuration Interrupt
statistics histograms registers control

SRAM interfaces Control interface

4 4

Mali-C55

Color/data
plane outputs

T E
B —

?

! !

External SRAM 10 AHB Lite

!

Interrupts

Figure 13: Block model of a modern ISP, the ARM Mali-C55, showing

considerable internal complexity. Image from ARM [8]

containing internal control and data configuration. Such a device is depicted in Figure 13.
These ISPs process incoming image data from a connected camera, do some processing on it,
and output it in some way, typically direct DMA into a framebuffer somewhere in memory.

This complexity is also heterogeneous; some ISPs possess image correction capabilities or
dual-path image processing pipelines for lower-latency image previews to be used in “selfie
cameras [86].” Likewise, many camera modules contain on-board ISP capabilities, including
many off-the-shelf models for Arduino-like devices. Finally, cameras can also capture images
in multiple formats, each with their own properties, requiring configurations between the

camera and ISPs to agree to function correctly.

4.3 Simplifying the Driver Stack

Mainstream FWKs employ extensive device driver infrastructure to support the wide
variety of devices available. Generalist kernels such as Linux have a primary goal of support-
ing as many kinds of devices as possible, which results in large driver frameworks. These
frameworks model a given class of devices, whether it is I2C controllers, graphics processors,

or even UART devices. Hardware changes over time and dropping support for a device

53

architecture is unpopular and thus not common [49]. As a result, we can infer that device
frameworks continuously accumulate complexity in order to support new features and ar-
chitectures, but only infrequently trim it. While this results in good long-term support in
mainstream kernels, it means that largely irrelevant, legacy devices substantially increase
the complexity of the device class a driver framework model must consider. Further, ker-
nel subsystems over time must themselves evolve to interoperate with other subsystems—the
integration between the Linux media controller framework and the v412 subsystems is a
good example as Madieu describes it [59]. The sum total is that this creates a maximized
kernel footprint in exchange for a minimized device-specific footprint, the natural inverse of
Passos’s 2021 discussion of “feature scattering.” [78]. The growth of complexity is also visible
in the corpus of “debloating” research which aims to undo this cumulative complexity [42].

While this approach is well-suited to such FWKs, it is not well-suited to TEESs, explicitly
due to the large amount of complexity in fully-privileged kernel code. Even if a kernel’s
subsystems and frameworks can be leveraged to quickly support a single device’s needs, the
kernel contains the complexity needed to support all the devices that aren’t present in a given
configuration. Since we assume that untrustworthy software will not be deployed to trusted
partitions, what we require of the OS changes. Indeed, more functionality and hardware
access can be forced onto applications, moving some driver logic that currently resides in
the kernel into userspace libraries. This sort of reduction in kernel hardware abstraction
layers (HALs) means that substantial amounts of code from the kernel and drivers can be
removed. With this removal of HALs and shifting responsibility onto userspace libraries we
can radically simplify the driver framework.

Although we seek to reduce the gap between a userspace library and the hardware we do
not remove it entirely. Access to hardware should still be moderated by the kernel, though
our model is intentionally flexible. We believe that a message-based model of how userspace
libraries interact with kernel device drivers is ideal. Many such frameworks exist, including
the ioctl and virtio frameworks [88]. By defining commands atop a generic message bus,
hardware can both generically and safely exposed to userspace. In the ioctl model the
kernel serves only as a secure intermediary between the driver code and userspace, which use

variable-length memory buffers copied across the user space/kernel boundary as the message

54

bus. This mechanism allows device drivers to much more directly expose their functionality
to applications, as opposed to framing a device’s functionality inside the traditional UNIX
file-based operations. Indeed, this concept of kernel bypass/minimization has even become
popular in Linux, in turn eliciting other research kernel designs, such as the demikernel [114],
which contrasts the existing performance-oriented bypass paradigm with a desire to offer

higher-level abstractions.

4.3.1 Driver Complexity: Video4linux2 and the Media Controller Framework

The complexity of SoC devices like ISPs has resulted in Linux adopting a correspondingly
complex framework. The video4linux2 framework, v412, attempts to support all real-time
video capture devices, which includes cameras. This framework models devices as containing
subdevices of their own, each potentially exposing their own operations to manage aspects of
their operation, the so-called “many knobs” of v412. Additionally, the v412 framework at-
tempts to manage the entire system, including DMA and memory management [59]. Further,
the v412 system has integration with the Linux media controller framework, which creates
a graph-oriented API of “pads” where data flows from sources to sinks. As opposed to the
media controller framework, v412 itself has an interface layer to userspace, the videobuf2,
or vb2, interface, a comparatively simple model in which a “buffer” containing video data
that may be broken up into separate planes as required by the image format. This vb2
interface connects to a queue system which manages the memory and datastreaming of the
underlying v412 device. The complexity embodied by these two separate frameworks, v412
and the media controller framework, combined with the overlap in responsibility between
the videobuf2 portion of v412 and the media controller framework, means that a significant

fraction of a Linux camera driver is just integration with this framework.

59

4.4 KaTZe Implementation of Trusted I/O Devices

We realized the above design points in KaTZe, porting and simplifying several device
drivers from Linux into the Kitten kernel. We detail the implementation here, connecting

decisions made to their corresponding design points.

4.4.1 Secure Device Access

Devices in ARM-based SoC platforms are nearly always and exclusively accessed using
a memory-mapped I/O interface in the CPU’s regular address space. Some devices sup-
port a register-based interface to support programs written for older ARM versions, but
this interface is deprecated and is explicitly disabled under certain circumstances [5]. As
ARM TrustZone includes a “TrustZone Controller (TZC)” that enforces security policy on
transactions on the memory bus, this security hardware does double duty and acts as an
I/O gatekeeper as well. In addition to securing the portion of system memory in the logical
trusted partition, securing the MMIO address ranges associated with a given I/O device
or controller allows us to assign a device to a specific trust partition. Using the memory
interface as the “thin waist” is a common and flexible approach in TEE hardware, used in
TrustZone, RISC-V designs, as well as in OpenPower.

More sophisticated versions of these controllers allow finer-grained policies over memory,
including region alignment, region read-write-execute properties, and the direction in which
a policy applies, i.e. untrusted access to a trusted region, or trusted access to an untrusted
region. We used a simpler version of this controller in this work which requires 2MB region
alignment and only prevents untrusted access to a region. A more complex version of this
hardware would enable a stronger partition boundary that can protect against programming

errors in the trusted partition or accelerate cross-partition message passing.

4.4.2 Underlying System Bus Architecture

The architectural interconnect is of considerable importance with regards to secure device

access. In the case of our RK3399, the bus between the camera and its associated ISP

56

block is dedicated, meaning that control over the output of the ISP means only bus-level
snooping can extract raw camera data. Knowledge of the system architecture at this level
is critical for correctly drawing the partition boundaries and understanding what devices
must be controlled strictly by the trusted kernel. As we will discuss later, the fact that the
dataflow is immutable but control is not will be used to further reduce the driver surface
area contained in the trusted partition. We note also that our design is not dependent on
this property, as the bus between the ISP block and memory is not dedicated, it is the main
system interconnect. We recognize that bus situations fall into three categories, two of which

we can tolerate:

o Fully-isolated buses, as the RK3399’s camera-to-ISP bus. The use of this device implies
ownership of these devices and thus the isolation of these busses is beneficial.

o Shared busses with access control capability, such as the RK3399 main interconnect. This
is the general case for TrustZone, where the TZC is capable of segregating secure traffic
from non-secure traffic.

o Shared busses without access control capability, such as I2C. This is the only intolerable
case, which consequently requires exclusive access to the bus. Most I12C bus controllers
lack a notion of security given the typical deployment requirements for I2C-based devices.
This means that an 12C bus cannot span the partition boundary and must reside fully

within one partition.

These categories outline the general need for access control-capable busses to support

the KaTZe system, a requirement met by many existing SoC-based systems.

4.4.3 HTU21D Sensor: I12C Control and Data

As a simple example case we implemented support for the HTU21D sensor in KaTZe.
The HTU21D sensor is a simple temperature/pressure/humidity sensor that uses the 12C
bus for both control and data. The device is well-documented thanks to its popularity
in hobbyist communities and the register map and data format is readily accessible. The
RK3399’s 12C controller is simple, and our port of the Linux driver is 720 LOC, versus
the original’s “840 LOC, a reduction of 15%. While lines of code are only an approximate

57

measure of complexity, it demonstrates that at least some portion of the complexity of device
drivers in Linux is owed to tying those devices into the elaborate Linux device framework.
We will show in later chapters that this TCB reduction and driver simplification can be
achieved with many kinds of drivers. The actual sensor driver that both fetches and decodes

samples is realized in “150 lines.

4.4.4 IMX214 Camera: I12C Control, D-PHY Data

Our development system has the Sony IMX214 camera module. Typical for this class of
modules, the control interface is exposed over 12C. The TZC allows us to gate access to the
12C controller with memory region-based access control. As mentioned above, the data from
the camera flows over a bus with fixed inputs and outputs. The camera driver itself allows
for multiple resolution and exposure choices, and contains configuration as byte blobs that
must be written to the camera. Otherwise the driver is self-contained and interacts with the
camera device solely via I2C. Thus the Linux camera driver is a “shell” through which the
kernel issues targeted 12C messages. As part of the port we moved substantial portions of
camera configuration logic into userspace, preferring to expose hardware instead of providing

an “IMX214 camera service” as the Linux driver aims.

4.4.5 SoC Device Complexity and Documentation: RK3399 ISP

Current SoCs are highly-integrated devices, with a variety of components at the inter-
connect level that share common chip resources. This level of integration means that across
SoCs implementation details vary, even when SoC designers re-use blocks across designs.
As a result of these non-standard designs, manufacturers have great influence over what
programmers and system designers know about their hardware, which is wielded for the pur-
poses of commercial advantage or perhaps “security,” as discussed shortly. Combining weak
documentation with high internal complexity results in difficulties for systems like KaTZe
where system decomposition at the hardware level is at the core of the design. Among the
most complex devices present on a modern SoC is the image signal processor, the ISP. The

RK3399 is no different, with its “RKISP1” ISP block being composed of several sub-devices,

58

ISP Block Diagram
Main Picture Path

MIPI I—>
MUXED ISP CropI> RSz
Parallel l—» ey
—‘ / e — CropI> RSz OB I’

IEO
IE1
IE 2
IE3

Rotate

DMA
_I Self Picture Path
ISP ISP
Statistics Parameters
Sensor Sensor

Conceptual 2 =

Media Topology| O 0
Sensor I

params

1
0 0 1

stats

(capture) I

[2

0 0
Resizer Resizer
1 1
selfpath mainpath
(capture) (capture)

Figure 14: The logical structure of the on-board ISP is several sub-devices.

each with its own register space and configuration. The ISP has resizers, “image enhance-
ment processors”, and croppers, across two different pipelines that can output in different
image formats in several different ways. Unfortunately, Rockchip, the manufacturer of the
RK3399, does not make the manual section concerning the ISP itself public. Instead, they
have upstreamed into Linux a driver with considerable in-line comments and associated long-
form code comments, which explain the use-cases for the camera that the driver supports,
which is not complete. Figure 14 shows a block diagram of the ISP, transferred from the
ASCII art diagram found in the code comments.

To wrangle this complexity there are two broad options: a customized driver stack for
each unique piece of hardware, or a maximized driver framework with hardware abstraction
layers (HALs) that ease code re-use. Each approach has advantages: a custom driver stack
simply is “hardware-oriented” and clearly communicates the hardware’s capabilities, whereas
a complex HAL framework is “kernel-oriented” and can shorten developer time. For decom-
posing system hardware, we prefer when possible to use hardware-oriented code, as systems

like KaTZe are not competing with mainstream kernels like Linux to be “general-purpose”

59

systems that run all applications across all kinds of hardware.

The Linux ISP driver is fully “kernel-oriented” and is integrated into the v412 system,
which organizes each of those components into their own sub-devices. While convenient for
large-scale codebases, this complexity and cleverness restructures control and dataflow into
a graph which only the v412 and media controller frameworks can easily understand. The
Kitten kernel port of the RKISP1 driver is 3928 lines of code versus Linux’s 4673, again a
reduction of about 15% in the device driver itself.

From the register map in the driver we infer that the device supports some form of
DMA to output finished frames into main memory, but the Linux driver doesn’t support
this and thus we could not support this functionality—another instance of the trend of device
manufacturers obscuring capabilities. The ISP instead outputs frames in a scatter-gather
style by supplying addresses of memory buffers to the device which are filled with data, at
which point the device interrupts the core to request the memory buffers be changed out.

To restrict access to certain parts of memory, the ISP contains its own IOMMUs. In
addition to supplying memory descriptors, the contained IOMMU must be configured cor-
rectly to describe what parts of system memory the ISP can access. In this case the IOMMU
is fully embedded within the MMIO range of the ISP itself, making securing the IOMMU
simpler. Other architectures, such as x86, share a single, system-wide IOMMU [36, 3]|. The
ARM model treats the IOMMU and ISP as independent components at the architecture
level, which allows them to behave identically whether assigned to the trusted or untrusted

partition.

4.4.6 Limitation: Undocumented Security Features

Security through obscurity is a technique that is unfortunately used with some regular-
ity [66, 80, 13]. Hardware counters have been used to detect side-channels [52, 106], including
undocumented ones [30]. The use of undocumented features on hardware has also made pos-
sible new kinds of attacks, such as by exploiting cache behavior [60]. Our port of the KaTZe
system to the RK3399 in particular presents an instance of this difficult general trend. For

the RK3399 most security features are configured by writing to a “secure general register file

60

(GRF),” a large block of registers exposed as a single device through which security features
are configured. While part of this register file is documented through bits and pieces of
published drivers, it is not fully described in public manuals.

Each device that can issue transactions onto the memory bus, or “bus masters” as ARM
reference material describes them, has a security state which is managed by the TrustZone
controller. In theory, this allows the system to be partitioned into secure and non-secure
partitions, including most of the components of the SoC. However, this functionality is
incompletely described in the manual making it impossible for us to assign the RKISP1 to
the secure partition in practice. Research suggests that the manual sections are available

under NDA, which we were not able to obtain.

4.4.7 Userland Camera Interface

To deliver frames from the kernel

Userspace Camera Library

into userspace we expose functionality
through the standard ioctl system, of-

fering an operation to map frame buffers

directly from application memory to re-

Translates/Maps
. . to
dinary copy from kernel buffers into user Hardware

ceive the camera output, as well as or-

Kernel Drivers

memory. The interface is shown in Fig-
ure 15, which we drive from userland us-

ing a simple library. In some ways this

Figure 15: Our driver model configures

design resembles a simplified version of

v412’s own vb2 system. However, our sys- the ISP with a userspace library which

tem contains the same level of kernel com- is effected by kernel drivers to hardware,

plexity; the complexity must reside some- without device abstraction.
where and we have opted to push understanding the capabilities of various camera devices

into userspace, which is more flexible and easily changed as compared to kernel code.

61

4.5 Evaluation

KaTZe’s assumptions about hardware combined with its kernel design allow a “lift and
shift” approach to be used with many SoC platforms. We ported Linux drivers to demon-
strate the viability of the approach as well as those necessary to enable a trusted I/O path
relevant to a privacy backplane use-case, which in this case is a pipeline from a camera into
a vision model. We first ported the HTU21D temperature sensor to demonstrate feasibility
and then ported the RKISP1, IMX214, and supporting platform device drivers to enable
the image pipeline. The HTU21D sensor is 12C-based, such devices being commonplace on
edge/IoT platforms, and has the same functionality as in Linux. We leave a full examination
of the HTU21D sensor and the broader 12C bus’s performance to later chapters. The ported
IMX214 driver has feature parity with Linux’s, as does the RKISP1 driver, however it has
additional debug and statistics features that we ported but do not use. We retained this code
in our ported version to facilitate the most fair comparison possible regarding complexity.
While platform devices such as the RKISP1 will vary widely from one SoC to another our
porting approach is applicable to other SoCs as well. To evaluate our drivers quantitatively

we measured sampling rates, but our focus is on feasibility before performance.

4.5.1 ISP TrustZone Overhead

It is documented that TrustZone has little to no architectural overhead on memory trans-
actions [81], suggesting that assignment of the ISP to the secure transaction domain should
have little to no overhead. However, because the RK3399 is under-documented and we were
not able to fully realize the ISP outputting frames into secured memory, we cannot be sure
that its performance under TrustZone will be exactly the same. According to the RK3399
technical manual [86] bus-level security is implemented by the ARM TZC-400 controller
device and according to that controller’s manual[6] all transactions on the protected busses
are checked for security status. The RK3399 manual also shows that the bus connecting
the CPU to memory is the same as that connecting the ISP to memory, so the differences

in security status should affect any CPU-to-memory benchmarks in the same way. Thus we

62

refer to our previous memory benchmarks which test exactly this, Figures 6 and 7, which

show that TrustZone enforcement status imposes no overhead on these memory transactions.

4.5.2 Image Recognition on Captured Frames

We used a simple, unoptimized image recognition pipeline to demonstrate the functional-
ity and viability of our approach. The pipeline captures images from a Sony IMX214 camera
at the native 1080p resolution, which the RK3399’s ISP processes and resizes to an output
size of 800x600 with an output format of YUV420p, which is a multiplanar format. The
output format is not of huge significance, but in this case one of the planes is the grayscale
version of the captured image. The facial recognition system we use is the SOD model [82].
SOD supports a high-speed facial recognition model type called “Realnets,” which they claim
are ideal for lower-power embedded devices; we tested both the Realnet code as well as the
more capable CNN code. We discovered that the Realnet models do not recognize correctly
on the ARM64 platform, including both the Linux and Kitten kernels, though it is functional
on our x86 development machines. We verified that the Realnet model is capable of recog-
nizing images captured by the camera by running recognition on our development machines,
but the throughput of the Realnet code is dependent on the model itself. To demonstrate an
end-to-end, in-situ solution we were forced to use one of SOD’s object recognition CNN mod-
els, which has substantially longer inference times, but works on both our ARM64 evaluation
platforms as well as our development machines. In both cases the userspace application is
simple, mainly acting as glue between the image capture and SOD code. To show broader
viability, these benchmarks are conducted on a single A53 core even though the RK3399
has the more capable A72 cores. The results are shown in Figure 16. Even though it is an
unoptimized research prototype, the KaTZe stack achieves 27FPS, with Linux performing at
126FPS. The recognition model confidence scores are identical between Linux and KaTZe.
These results demonstrate that, while not as performant, our argument that a simplified ker-
nel can achieve acceptable performance while delegating security non-critical functionality

by keeping only the data-critical parts of the pipeline in the secure space, is valid.

63

SOD Recognition Framerate

Linux Kitten

Figure 16: SOD achieves a recognition speed of 27 frames per second on

KaTZe compared to Linux’s 126.

4.5.3 Conclusion

This evaluation demonstrates Research Insights 3 and 4, that extending the trust bound-
ary into all parts of the hardware when the TEE supports it provides robust I/O separation
without significant overheads, another key requirement of a usecase like the backplane. In-
stead of comparatively complex systems that insert hypervisors to control the untrusted
partition or requiring specialized hardware, thorough use of existing TEE architectures al-
lows systems to directly secure relevant I/O paths with acceptable performance costs, which

in turn allows greater processing of data near where it’s collected on nodes.

64

5.0 Paravirtual Device Drivers

A critical design point for TEE software is the trusted computing base, or TCB. Briefly,
this term refers to all the complexity that needs to be defended against attack, including
both the hardware and software, and much existing research has focused on TCB size as
an approximate metric of security, either for [18, 94, 50, 9] or against [12]. Unfortunately,
mainstream kernels serve as evidence that as the set of drivers increases so too does the
complexity of the driver infrastructure in the kernel. In Chapter 4 we described how we
were able to simplify driver code when it lives in the trusted partition. However, in a shared
system with both trusted and untrusted system software managing resources, there will be
overlap. We show how this resource contention can be used beneficially by delegating the
work of managing certain shared resources to the untrusted partition without sacrificing
security. In fact, most devices on a given platform do not need to be fully within the secure
partition and should not be. We start this claim with the observation that in a multikernel
system it is difficult or impossible to create a “hard” boundary between the partitions that
logically resemble two disjoint systems communicating over a message channel, given the
underlying, shared hardware platform. Instead, we should make the trusted partition a
client of the service that the untrusted partition already provides for itself-a functioning
system. However, we must do this in a way that doesn’t compromise our trusted partition’s
security. We intend to use paravirtualization to characterize a device as decomposable into
functionalities, each with distinct security properties. Our key idea is to extend trust to
the paravirtualized I/0 plane. By adding a notion of hardware-enforced security to the
paravirtual plane, we can re-use many of the ideas explored by research on paravirtual
drivers by shunting non-security critical functionality out of the trusted partition and into
the FWK. We evaluate this framework in terms of both functionality and performance by
showing that the image pipeline shown in the previous chapter doesn’t require the wholesale
porting of all involved device drivers while also measuring and characterizing the TCB savings
achieved with paravirtualization in terms of both software lines of code and hardware inside

the trusted partition.

65

5.1 Security Sensitivity of Devices

We can discuss a device’s security sensitivity by examining it across a few different

dimensions:

e Does it interact with the trusted partition, either through the control of the device or its
data?

o If it does interact, what impact does it have on confidentiality, integrity, and availability
(CIA) properties?

e Can a device’s functionality be decomposed into pieces that have differing security prop-

erties?

As a quick heuristic we can ask if the device even interacts with the trusted partition.
We consider the two partitions as separate systems—if hardware partition enforcement is
configured correctly, it is logically equivalent to as if they were two systems separated by an
airgap. Assuming a device interacts somehow with a trusted partition, what effects could an
adversary have on the trusted partition using that device? Consider the difference between
a DMA engine and the power controller: an adversary that controls a DMA engine capable
of interacting with the trusted partition could arbitrarily modify or exfiltrate data in the
trusted partition, affecting both confidentiality and integrity. However, a power controller by
the adversary can only affect availability by powering down trusted devices or possibly the
whole system. Further, a compromised data bus between a specific device and the memory
controller can impact availability, but not confidentiality—without the memory controller, an
adversary cannot change where the data goes, just if it goes. Finally, we must consider a
device’s internal capabilities and evaluate each of them separately. For this we will consider
an I2C controller: the controller is the gatekeeper for sending messages to devices on that
12C bus, but requires the support of other system devices to accomplish this, such as power, a
clock source, and configuration of multiplexed pins. Asshown in Figure 17, we can decompose
the I12C controller into the separate security domains of the bus messaging capability and
those supporting devices; similarly to the main system bus, the devices that support the

I2C controller can also affect availability, but importantly they cannot affect confidentiality.

66

Messages on
. Untrusted Peripheral Bus

. Trusted

Enable Power
Domain

Configure Clock
Domain: XMhz

nable Pin Function:
[2C I/O

Figure 17: Decomposing a device reveals some have heterogeneous security

properties which permit secure shunting of functionality out of the TEE.

However, the messaging functionality of the I2C controller impacts all three properties,
such as by sending false messages (authenticity) or intercepting valid ones (confidentiality).
Finally, we make an observation that certain capabilities cannot be used by the adversary
without damaging themselves: the capability to power-down the CPU could be used against
the trusted partition, but on a system with only a single CPU or without the ability to
power down individual cores, this means also powering down the CPU cores controlled by the
adversary. While this capability would affect availability, we can reason that the adversary
cannot use it because it would also degrade their capabilities.

Now we can suggest that the functionality that cannot affect confidentiality or integrity
of sensitive data ought to be left to the untrusted partition to handle, as it already knows how
to do this and we are only reducing the amount of functionality we have to teach the trusted
partition how to do itself. Splitting drivers across the data-control axis will allow us to leanly
and securely paravirtualize many of the complex and troublesome platform devices that make

up SoC-based architectures, resulting in a reduced TCB and improved trusted software

67

portability without compromising the logical boundary between the partitions themselves.
This concept supports Guarantees 1 and 2 in the threat model, that untrusted software

cannot see the data that devices handle, but may see that the devices are active.

5.2 Background and Related Work

When sharing a single hardware device between two pieces of software some concessions
have to be made to avoid conflicts; different software may configure hardware incompati-
bly. This problem space can be described as an axis from “hardware-aware” to “hardware-
unaware.” For example, the filesystem abstraction fully hides the details of an underlying
block device from software, instead providing an abstraction and handling the details of
hardware at the kernel level, and history has demonstrated this approach to be quite prac-
tical for general, user-space software. At the other end are “hardware-aware” approaches,
often in contexts where abstraction is too costly, such as embedded or real-time OS systems.
To cut abstraction costs these systems sacrifice some degree of flexibility and portability by
showing the software more of the details of the underlying hardware.

These approaches work well for userspace software, but what about for kernels them-
selves? When sharing hardware between multiple kernels the problem becomes more diffi-
cult. If kernels safely multiplex hardware between applications, who multiplexes it between
kernels? Alternatively, who provides hardware services to the kernels that it can then ex-
pose to its applications? When a device owner/host kernel wants to share hardware with a
guest kernel, its options range from full virtualization to co-ownership. In the case of full
virtualization the guest believes it is interacting with actual hardware, but this approach in-
troduces overheads or requires specialized hardware to avoid those overheads. At the other
end is co-ownership or direct passthrough/assignment. Direct assignment is a straightfor-
ward solution in the fact that it is not a sharing technique, but when a device host grants full
control over a device to a guest. Alternatively, co-ownership is where each kernel is aware
that it shares the hardware, which introduces state coordination complexities so that each

kernel does not corrupt hardware state for the other kernels. Hardware is often not designed

68

for this, possibly requiring coordination by a third party, such as the underlying firmware,
to achieve.

Paravirtualization is a well-known virtualization technique [87, 11, 95] which strikes a
balance somewhere in the middle of these two options, by requiring the the host and guest
to cooperate. The guest kernel knows it accesses an abstracted piece of hardware provided
by the host, and the host typically exposes some part of the underlying hardware to the
guest. In some cases the guest accesses hardware through a “generic” interface that the
host provides, essentially turning hardware into an abstracted service itself. In traditional
hypervisor contexts paravirtualization is used to enable guest-host cooperation to achieve
better performance or portability. Perhaps the most prominent device paravirtualization
framework is virtio [87], which is widely enough used that cloud providers such as Amazon
use it as the preferred driver in hosted VMs [15]. Paravirtualization of a device works by
recognizing that data and control are separate—it is possible for a guest to request specific
blocks from an underlying block device and to receive them without understanding how to
interface with that specific block device’s controller. This separation allows the paravirtual
host to act as the control surface, allowing the guest to delegate complexity. In traditional
virtualization environments this is done for a variety of reasons including scaling and perfor-
mance management, as well as for portability. These frameworks expose a “generic” version
of the device that the guest interacts with. In virtio’s case, communication between the
guest and host occurs over command ringbuffers with a scatter-gather type-indirection to
point to input and output memory buffers. This structure decouples the command and its
parameters from the input and output data [73].

Paravirtualization has been explored before as a technique for crossing trust bound-
aries [71, 115]. Zhou’s Wimpy kernels model heavily uses this idea, but with the addition of
a verification model mediated by a hypervisor. Their work specifically focuses on handling
the complex case of USB which multiplexes control and data on the same channel, which

substantially complicates sharing such a device.

69

5.3 Split Drivers to Reduce Trusted TCB

The split driver model, shown in Figure 18,

Untrusted OS Trusted OS

is a key component of our paravirtualization

approach. To efficiently share devices we sug- 0 control
s Plane

gest a “Sp]it driver” that loglcally spans parti- . o i :

tions. From the trusted perspective, control-

related functionality is mostly or wholly im-

plemented as calls to the portion of code resid-

ing in the untrusted partition, whereas data- Hardware

related functionality is implemented wholly in Figure 18: Our proposed driver
the trusted partition. Importantly, the device model spans both the untrusted
and driver model remains unchanged within and trusted OS, delegating plat-
the trusted kernel. With the use of a tightly- form management to the untrusted
integrated cross-partition messaging channel, partition.

drivers can easily exist within both kernels simultaneously. This gives us control function-
ality by leveraging existing functionality inside the FWK, in-place, often with little modi-
fication. As Liu [57] and others demonstrate, paravirtualization is useful enough that even
when using some degree of bypass splitting the control and data plane is warranted.

Any paravirtual design with a notion of trust must adequately address how to securely
deliver data between the host and paravirtual domains. In a hypervisor context, securing
this channel so that the host domain does not leak information into the paravirtual domain is
sufficient, as hypervisors can already inspect guest memory. However, in a trusted paravirtual
driver security must be extended in the other direction as well, preventing the paravirtual
domain from leaking information to the hypervisor/paravirtual host. Further highlighting
this requirement is that our paravirtual context is across a horizontal rather than vertical
axis and thus privileges are not hierarchical in the way that hypervisors are with guests,
making existing hardware enforcement like nested page tables irrelevant. Instead, the trusted
platform must provide fine-grained enforcement based on security domain, e.g. by being able

to forbid the trusted partition from accessing the untrusted partition as well as preventing the

70

reverse. Such functionality is currently available on commodity TrustZone systems, which
allows separate read-write permissions applicable both for secure-to-nonsecure accesses as
well as the reverse. This hardware capability relieves the developer from the burden of
proving their code correct as the only means of ensuring no data leaks between domains,

which is not practical in the face of an adversarial untrusted partition.

KaTZe

I
Physical I2Ci Controller

Pin i
Etc.

Figure 19: The functionality of a single “composite” paravirtualized device

is provided by several discrete hardware devices.

5.3.1 The “Composite” Devices of the Paravirtual Framework

A direct result of paravirtualization is the logical reduction of hardware complexity from
the paravirtual client’s perspective. When a framework like virtio exposes a block controller
it exposes a “generic” version while the corresponding device underneath is a specific block
controller from a specific vendor, which is accessed over a specific bus. This device may
require configuration “inputs” from other parts of the system, including the IOMMU and
interrupt controller, as shown in Figure 19.

The graph of device functionality dependencies takes on three forms, based on perspec-
tive: the host system, the paravirtual framework, and the client system. They are depicted
in Figure 20. The host system perspective is typical, fully considering each device’s inter-
connections, requiring a complex graph dependency system in Linux to resolve, including
asynchronous initialization callbacks [55]. By comparison our paravirtual framework “trims”

the graph, i.e. it abstracts the block controller as the device plus its dependencies. Finally,

71

the client system perspective sees only the paravirtualized block controller, which may be a
generic block controller or the actual device itself, as in the case of the RK3399’s ISP.
From the paravirtual perspective, the trusted partition is the client and has the most
condensed view of the underlying hardware. The client interacts with the paravirtual frame-
work layer by making requests to the paravirtual host, which is in the untrusted partition.
In particular, the half of the split driver that resides in Linux and controls the device is
the paravirtual host, which leverages the existing Linux device system to provide the device

service.

|:| Paravirtualized Device
. Paravirtual Support Devices

. Host Devices

Block Device

Figure 20: Our paravirtual framework organizes the system’s devices into

three perspectives, or “layers” of increasing granularity or abstractness.

5.3.2 Containing Platform Complexity

The split driver model also works to contain the complexity of the underlying SoC plat-
form in IoT sensing environments. These systems are almost universally SoCs, with vendors
providing massively different packages, capabilities, and hardware revision versions; even
within a single vendor’s SoC lines there will be variations. Device vendors do have some
incentive to provide drivers to mainstream kernels like Linux or FreeBSD, but not much in-
centive or scope to do it securely. While the review process of open-source projects like Linux
puts in a floor of quality for contributions it is not sufficient to provide security guarantees.

Fortunately, the delegation allows us to bypass this concern and use these drivers in-place

72

in an untrusted manner.

By limiting the trusted OS drivers to only the sensors themselves we constrain the com-
plexity of the SoC platforms. This can be seen by example in Figure 21. Assume that the
trusted partition for a given system has been specified, configured, audited, and deployed. It
will contain some paravirtual device drivers, such as a camera driver or the ISP driver. This
trusted partition is typically packaged into an image and signed in some way that enables
attestation, discussed later in Section 6.1. This image is only meant to change infrequently

and thus is often bundled as part of the system’s firmware image.

FWK Configuration:

RK3368

Interkernel

Clock
Controller
B

SPIatA'formB Power
ervices Controller
B

Paravirtual

IOMMU
Driver

FWK Configuration:
RK3399

Clock
Controller
A

Platform
Services
A

Power
Controller
A

Figure 21: Paravirtual drivers expose a “key” to the untrusted partition,
which various underlying platforms can fit to provide services to the TEE.

The trusted portion of the device driver cannot be changed without a re-evaluation of the
whole trusted partition. However, a paravirtualized trusted partition image allows a degree
of flexibility to the underlying platform. Consider by example the other systems produced by
Rockchips than the RK3399 platform. It is known from the Linux driver [112] that this same
IOMMU block has been used in other Rockchip SoCs, including the RK3368, the RK3036,
the RK3328, and others. While the device itself functions the same, its device dependencies

73

differ. Without paravirtualization the overall driver configuration of the working kernel must
change. But with the split, paravirtualized driver, a trusted partition image can freely change
certain underlying devices without changing the drivers contained in the trusted partition

image.

5.4 Implementation of Split Drivers in KaTZe

We realize our split driver design in KaTZe with the help of TrustZone’s flexible capa-
bilities. Guo and others [31, 13] reinforce that a key issue with the TrustZone ecosystem
is the lack of drivers, and we can speculate that the reasons may be that there is too little
interest, the OS and platform are too hard to write for, or the devices are too complex
to port drivers. Thanks to configurable controllers attached to most busses in TrustZone
platforms, including the DMA controllers, interrupt controllers, and main bus controllers,
it is possible to discriminate accesses based on the security state of the accessor, and even

assigning finer-grained read-write permissions to these accesses.

5.4.1 Privacy and Security Considerations

In our motivating use case, the Privacy Backplane, we accept that protecting availability
is impossible, considering that on all nodes in the system there is a co-extant, potentially ad-
versarial kernel that has kernel-level but non-secure access to the same underlying hardware.
In the backplane context, someone whose data has been collected is primarily concerned with
the misuse of their data—they want their privacy policy enforced so that frames showing their
faces must be anonymized before use, for example. In the naive case, the infrastructure own-
ers, i.e. the potential adversary, also have an interest in data integrity, as ruining sensor data
makes it inaccessible for both the trusted backplane and any untrusted clients that interact
with it.

Though we must concede availability, we contend that we can retain confidentiality and

integrity. Consider the example of the D-PHY bus found on our RK3399 system, shown in

74

Device C Device B Other Device
(D-PHY Bus) (Image Signal (Trusted
Processor) Memory)

Frame Data

.

G’ Can’t redirect data

LLLLALLLL

Figure 22: If input A linked to output B are trusted and a midpoint C
cannot be configured to output to an adversary, then C’s data is trusted

even when control is not.

Figure 22. The bus functions as a continuous stream of data, and configuration ultimately
determines the interval at which an arbitrary “frame end” signal is delivered, indicating to
the output device to consume a complete frame. Misconfiguration of this device results in
garbled inputs to the downstream devices. However, because of physical limitations of the
system it is impossible to redirect data on the bus itself-it always flows into the ISP block.
Thus we consider that the control of the bus is untrusted but the data on the bus is trusted.
As it turns out, this pattern is found in many devices on SoC systems and exploiting this
pattern allows substantial reduction of trusted partition driver code by re-using existing

driver code in the untrusted partition without compromising data security.

5.4.2 Re-Using Existing Linux Configurations

In our implementation we leverage the fact that Linux automatically configures platform
resources for nodes in its device tree, a system configuration format that describes resources

and their interdependence [58]. A device tree describes a device’s location in memory, what

75

Original ISP Configuration

ispo@ff910000 {
compatible = "rockchip, rk3399-cif-isp";
reg = <0x00 Oxff910000 OXx00 Ox4000>;
clocks = <Ox08 Ox6e Ox08 Oxe9 OxO8 Ox1le3>;
clock-names = "isp,aclk,hclk";
phys = <@xab>;
phy-names = "dphy";
power-domains = <0xla 0x13>;

IYYYVY V¥

status = "okay";
}
References to
]) untrusted-configured
Interkernel-Enabled ISP Configuration platform resources
1spe@Ff910000 { remain unchanged

compatible = "rockchip,rk3399-cif-isp-ik";
reg = <0x00 0xff910000 OXx00 0x4000>;
clocks = <Ox08 Ox6e Ox08 Oxe9 OxO8 Oxle3>;
clock-names = "isp,aclk,hclk";

phys = <@xab>;

phy-names = "dphy";

power-domains = <@xla 0x13>;

status = "okay";

AAAAAAN

}i

Figure 23: By changing only the selected Linux driver, our implementation

re-uses valid Linux configurations to enable a trusted paravirtual device.

driver to use, and the platform resources it requires, such as clocks, I/O pin configurations,
and power domains. In our driver framework we benefit from this auto-configuration by sub-
stituting the existing driver for a paravirtual one. This is shown in Figure 23. This slotting
technique provides a straightforward pathway for augmenting existing Linux drivers incre-
mentally, as the existing driver code-bases can be augmented with the interkernel capability
by hooking into a central dispatch system similar to interrupt handlers.

To fully support the RKISP1 ISP requires configuring several other components: the
D-PHY bus, its power domain, a clock source, the access control of its MMIO range, and
the input camera itself. Access control is a TrustZone configuration and is done by the
trusted partition. The other configurations are part of the platform and controlled by Linux.
We leverage Linux’s device tree functionality to auto-configure some of these devices, and
for the others we trade power-efficiency for simplicity and mark these platform devices as
“always-on,” which prevents the Linux power management system from disabling them. We
further elide the power management system by choosing to configure the drivers at system
initialization time, guaranteeing that the devices such as the bus, power, and clock will be
in a known-good state when the paravirtual framework configures peripherals that depend

on these platform devices.

76

These short descriptions illustrate how the separation of the control and data planes
facilitates driver decomposition, allowing re-use of existing drivers by integrating with the
Linux device infrastructure. By securing the data plane directly by implementing drivers
in KaTZe and leveraging the untrusted Linux kernel for the non-secure control plane, we

demonstrate a general model for secure sensor access that can apply to other sensors as well.

5.4.3 Device Limitations: Memory Access Granularity

Due to the limitations of TrustZone hardware, not all devices can be decomposed along
their data-control axis. Current implementations lack sufficient resolution to separately
choose the security state of all devices. Specifically, the TrustZone controller on the RK3399
SoC secures memory in 2MB chunks, while several SoC sub-devices are mapped into memory
with more than one device per 2MB-region. To achieve per-device security states, hardware
must either: map devices more sparsely inside the address space, or improve the granularity
of security regions. This still limits device decomposition to per-device, when optimally it
would be intra-device for most flexibility. Devices such as UARTs where data registers are
intermingled with control registers in the same memory page cannot be secured without
byte granularity. With less granularity UART-like devices can be owned by the trusted OS,
but not paravirtualized. Capability systems like the recent CHERI[111] permit byte-level
granularity on access capabilities, which can supplement or perhaps replace the existing
TrustZone controller depending on the capability implementation.

The problem of granularity when securing the data plane is reduced if a device is itself
capable of writing to memory; though a UART outputs data by being read from at certain
registers, some devices on modern SoCs are “push capable,” such as the RK3399 ISP. One
of its output options is a scatter-gather model where memory addresses are supplied to the
device and frames are written to those addresses by the device asynchronously to the CPU.
However, this functionality still does not permit intra-device decomposition and such devices

still cannot be easily paravirtualized.

7

5.5 Evaluation

To demonstrate the viability of the paravirtual, split-driver approach we tested both the
quantitative performance as well as the qualitative advantage of the system. We improve our
previous image recognition pipeline by paravirtualizing necessary devices. We benchmarked
the SOD image recognition, described in Section 4.5.2, on captured frames on Linux and
KaTZe and measured the sampling rate of the HT'U21D sensor under both the ported driver
as well as its paravirtual counterpart. Our image recognition pipeline employs paravirtual
driver components in non-performance critical code paths, demonstrating both the feasibility
of direct I/O in the KaTZe kernel as well as the utility of the paravirtual code; in that
benchmark, control of the camera is achieved using a paravirtualized 12C driver, as well
as the supporting platform hardware, including the clocks, power supplies, and I/O pin
configurations needed for the I2C busses, camera busses, and the ISP itself. To measure
qualitative advantages we analyze the TCB reductions achieved by using paravirtual drivers,
and describe the reusability of the paravirtual drivers as it applies to other systems using the
same underlying device. The underlying hardware design that allows for paravirtualization
is not specific to the RK3399 SoC and is applicable to other SoCs as well. The set of
devices we chose, namely: core platform devices (power, pin controls, clock), peripheral
devices (HTU21D sensor), integrated SoC devices (RKISP1 ISP), and high-speed peripherals
(IMX214 camera) and associated busses (D-PHY) span a wide variety of relevant devices on

these platforms and demonstrate the approach’s generality.

5.5.1 HTU21D: Paravirtual vs Ported

To show the performance overheads inherent in paravirtualizing a driver itself, we created
a paravirtualized version of the I12C controller driver and reconfigured our existing, ported
HTU21D driver to use the paravirtual backend. This benchmark is constructed and is not
secure in the context of the HT'U21D sensor itself, but could be acceptable in other contexts
when only the control plane for a device is exposed over the I12C bus, such as the IMX214

camera. The principal difference between these two systems is the I2C controller; in the

78

paravirtualized system, the Kitten kernel driver is paravirtualized, sending commands and
data to a corresponding Linux kernel host driver, which forwards the commands to the
physical 12C controller. In the native system, this work happens entirely in the Kitten
kernel without the involvement of the Linux kernel. The results are shown in Figure 24.
The native driver on average takes 54ms (18 samples/second) to acquire a sample from the
device as compared to the paravirtual driver’s 82ms (12 samples/second). For comparison, we
performed two extra experiments, the latency for a simple ping-pong, as well as a ping-pong
which performs a copy of dummy data. At both over an equivalent 2400 samples/second
(7410 microseconds per sample), it is clear that the inter-core communication is not the
bottleneck. While a control plane for a camera is not performance-critical, this benchmark
demonstrates that paravirtualizing a device can be acceptable, especially for a low-speed,
low-frequency bus such as 12C where sampling rates for any attached device will be low.
Meanwhile, this small performance trade-off allows a nearly complete delegation of complex,
error-prone hardware handling code to the untrusted kernel, resulting in an improved TCB

for the secure kernel.

HTU21D Sample Rate

w
o

= [N N
(6] o (6]
T T

o
T

Samples per second

o o
T

Native Paravirtual

Figure 24: The HTU21D paravirtualized driver achieves a reasonable frac-

tion, 0.626x the performance of a native driver equivalent.

5.5.2 TCB Reduction

Part of the motivation for using paravirtualization is the de-privileging of driver code.
To investigate how much unneeded code we can move out of the trusted partition, we look
at the drivers involved in a few key areas. We consider platform code separately from

driver code, and we look at both the drivers needed to run the HTU21D sensor as well

79

as those needed to run the camera pipeline. Platform code offers the greatest advantages,
as the trusted partition does not have a requirement to interact with most platform code,
and thus the Kitten kernel does not need to even be aware of this functionality. However,
for other concerns, such as camera management, a simplified paravirtual driver still masks
the entirety of the hardware-specific code from the trusted partition, presenting these as
generic ops like “start streaming” or “set exposure” Our tabulation of the driver code
left out of the Kitten kernel is shown in Table 3. It is further worth noting that, given
time and functionality constraints, not every driver has been fully optimized for size when
porting to the Kitten kernel, such as the ISP block which contains inactive code that provides
unneeded capability, such as image effects. We also did not attempt to tabulate the full driver
infrastructure weight that each of these individual drivers is plugged into. This leaves out
of the Linux tabulation a not-insignificant amount of code; Linux’s I12C framework alone is
4870 LOC. Regardless, a full investigation and analysis of driver infrastructure is well beyond
the scope of evaluating this paravirtualization technique. This analysis demonstrates that
paravirtualization as a technique provides substantial reductions, providing the most benefit
for platform-wide device. Moreover, the Kitten kernel’s comparative simplicity allows even

complex device drivers to be trimmed somewhat of the Linux device driver boilerplate.

5.5.3 Conclusion

This evaluation demonstrates Research Insight 4, that substantial gains in capability
can be achieved by aggressively applying a multi-kernel framework which allows the trusted
partition to leverage the existing untrusted partition. In contrast to the prior frameworks
that are of the “enclave” model, we leverage robust TEE hardware and rely on it to protect
the trusted partition, which allows close interaction between the partitions. Indeed, this
integration is pivotal to our system, suggesting that secure, capable systems ought to rely

on this multi-kernel integration more.

80

Table 3: Paravirtualizing the platform drivers results in an average reduction of “57% per

device, or an overall LOC reduction of 53%.

Original LOC | Paravirtual LOC | Percentage Reduction
Platform Management
Clock Management 1346 0° 100%
GPIO Pin Control 2680 0® 100%
Power Management 891 0° 100%
HTU21D Driver Stack
12C Controller 837 735 12.2%
HTU21D Sensor 200 117 41.5%
IMX214 Camera/RK3399 ISP Driver Stack
RKISP1 ISP 4699 3909 16.8%
Rockchip IOMMU 975 1082° -11%
IMX214 Camera 888 0 100%°

%By exploiting default, always-on configurations, the Kitten kernel can be completely unaware of this
functionality.

A good example of where Linux’s large inventory of utility and convenience functions allows code re-use
across drivers.

°The camera’s dataflow cannot be retargeted, but certain controls can, in theory, compromise security,
such as adjusting exposure to subvert facial recognition.

81

6.0 Discussion

The KaTZe system provides broad support for an important application class in the
edge/IoT space, along with secure I/O and a driver model that leverages the existence of
an untrusted full-weight kernel. However, this forms only the system layer of a distributed
trusted application like the Privacy Backplane as described in the Section 1.1. An important
but out-of-scope component of such an application is the attestation protocol, which we

discuss to illustrate KaTZe’s architectural compatibility.

6.1 Support for Attestation Mechanisms

The goal of attestation is verifying that a program is in a known, trusted state and is
generally classed as two problems based on the perspective of the observer: local and re-
mote. For distributed trusted applications some scheme for remote attestation is necessary
to establish trust, while local attestation suffices for the trust envelope of a single machine.
Parno has previously given a thorough description of the attestation problem [77]. Briefly,
to achieve remote attestation, or trusted boot, the system must accumulate “measurements”
or “evidence” that describes the state of programs that have run. This process is largely
orthogonal to the architecture of the system software so long as it collects these measure-
ments. Another consideration is how to store the measurements in a secure way, which can
be accomplished either by storing them in a local TPM, or employing a certificate chain to
secure them. At any stage of the boot process these measurements can be compared with
stored, previously-computed values to determine if software has been tampered with and
so prevent execution, making the boot process secure. Naturally a general-purpose OS is
capable of interacting with a TPM and recording hashes of programs, provided drivers are
available. Resultingly there are many TEEs that are compatible with local attestation, and
as a general-purpose OS within the trusted partition, KaTZe is capable of integrating into

existing local attestation/trusted boot chains.

82

For distributed trust, however, the situation becomes more complicated. Remote attes-
tation is the process of using the measurements or evidences to prove local state to a remote
verifier. To achieve this, a cryptographic identity must be present on the local attestor
that is known to the remote verifier, established out of band. To prevent tampering, this
identity is permanently bound to the system using one time-programmable memory. Again,
a general-purpose OS with drivers is sufficient to achieve this. There must exist a secure
channel between the remote verifier and local attestor and with techniques like TLS/SSL a
“virtual” secure channel can be established atop existing untrusted channels.

Remote attestation becomes substantially more complex when repeated attestation is
involved. Once an application is running, taking measurements becomes more difficult, as
measurements must capture state that can affect the good behavior of the application, but the
known-good values of these measurements must be available to the verifier. Thus a tension
between the size of the allowable state space and the difficulty to verify that state space exists.
Formally-verified kernels such as seL4 [40] provide proofs of correctness and security that
can simplify the remote attestation process, but they do not solve the problem of attesting
applications themselves, such as a database application or a machine learning model. Current
research to provide remote attestation of applications is with a sandboxed runtime, such as
the WaTZ sandboxed WebAssembly engine [68]. KaTZe can support the WaTZ protocol,
providing the same remote attestation support for applications. While KaTZe is not proven
correct, deploying an application-layer attestation mechanism like WaTZ provides a “secure
foundation” upon which a distributed, trusted application can be built; a secure system
image containing the KaTZe OS and WaTZ runtime would be audited, verified, and then
deployed. Though outside the scope of this work, remote attestation is a critical component
of a distributed trusted application that the KaTZe system is architecturally compatible
with.

83

6.2 Conclusion and Further Work

In this thesis a new capability in trusted computing was demonstrated. To accommodate
the difficult combination of rich application and I/O access, which has traditionally been

tackled separately, we identified three key properties that such a system would need:

e Supports existing applications currently in-use, without requiring re-design for a specific
security framework
e Support a direct, secure path to devices and expose them to applications

e Do these things without bloating the TCB of the secure kernel needlessly.

In the KaTZe system and our research, we have described such a system. In Chapter 3 we
described how the LWK concept provides broad POSIX capability, allowing the majority of
existing applications that are programmed with mainstream OS abstractions in mind to run,
without modification. Indeed, development of KaTZe programs can be done on Linux and
those binaries tested on a Linux platform. Further, when deployed to the KaTZe LWK TEE
kernel they remain performant for the task at hand. In Chapter 4 we explained that despite
the difficult situation of I/O devices in the Linux kernel on current edge/IoT platforms, a
LWK such as KaTZe can support relevant devices, even complex ones such as cameras and
image processors, while simultaneously trimming the fat from those drivers. In Chapter 5
we describe how paravirtualization can be applied to securely delegate large portions of
code, specifically that code which is needed to support common hardware platform devices.
We further apply this technique by recognizing that even our sensors themselves may have
security non-critical components and so we can delegate those control surfaces away, further

reducing the TCB of the secure kernel.

84

[1]

[2]

3]

[4]
[5]
[6]

[7]
8]
[9]

[10]

Bibliography

Tigist Abera, N. Asokan, Lucas Davi, Farinaz Koushanfar, Andrew J. Paverd, Ahmad-
Reza Sadeghi, and Gene Tsudik. Invited: Things, trouble, trust: On building trust in
iot systems. 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1-6, 2016.

Abdullah Al-Boghdady, Khaled Wassif, and Mohammad El-Ramly. The presence,
trends, and causes of security vulnerabilities in operating systems of iot’s low-end
devices. Sensors, 21(7), 2021.

AMD. AMD 1I/0 Virtualization Technology (IOMMU) Specification, October 2023.
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/
specifications/48882_I0MMU.pdf.

Android Open Source Project. Trusty TEE, 2023.
ARM. Arm Architecture Reference Manual for A-profile architecture, June 2024.

ARM. ARM CoreLink TZC-400 TrustZone Address Space Controller Technical Ref-

erence Manual, June 2024. https://developer.arm.com/documentation/ddi0504/
latest/.

ARM. Learn the architecture - generic interrupt controller v3 and v4 - overview, 2024.

ARM. Mali-c55, 2024.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, André Martin, Chris-
tian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark Stillwell, David
Goltzsche, D. Eyers, Riidiger Kapitza, Peter R. Pietzuch, and Christof Fetzer. Scone:
Secure linux containers with intel sgx. In USENIX Symposium on Operating Systems
Design and Implementation, 2016.

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. Cure: A security architec-
ture with customizable and resilient enclaves. In USENIX Security Symposium, 2020.

85

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/specifications/48882_IOMMU.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/specifications/48882_IOMMU.pdf
https://developer.arm.com/documentation/ddi0504/latest/
https://developer.arm.com/documentation/ddi0504/latest/

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
Operating Systems Review, 2003.

Andrew Baumann, Marcus Peinado, and Galen C. Hunt. Shielding applications from
an untrusted cloud with haven. ACM Transactions on Computer Systems (TOCS),
33:1 - 26, 2014.

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and Em-
manuel Stapf. Sanctuary: Arming trustzone with user-space enclaves. Proceedings
2019 Network and Distributed System Security Symposium, 2019.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Cap-
kun, and Ahmad-Reza Sadeghi. Software grand exposure: Sgx cache attacks are
practical. ArXiv, abs/1702.07521, 2017.

Marc Brooker, Mike Danilov, Chris Greenwood, and Phil Piwonka. On-demand con-
tainer loading in aws lambda. In USENIX Annual Technical Conference, 2023.

David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted tee systems. 2020 IEEE
Symposium on Security and Privacy (SP), pages 1416-1432, 2020.

Cesanta. Mongoose - an embedded Web Server, MQTT and Websocket library, 2024.

Chia che Tsai, Donald E. Porter, and Mona Vij. Graphene-sgx: A practical library os
for unmodified applications on sgx. In USENIX Annual Technical Conference, 2017.

Collabora. https://github.com/torvalds/linux/tree/master/drivers/media/
platform/rockchip/rkispl, June 2024.

Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Secure processors part ii: Intel
sgx security analysis and mit sanctum architecture. Found. Trends Electron. Des.
Autom., 11:249-361, 2017.

Karim M. El Defrawy, Norrathep Rattanavipanon, and Gene Tsudik. Hydra: hybrid
design for remote attestation (using a formally verified microkernel). Proceedings of
the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
2017.

86

https://github.com/torvalds/linux/tree/master/drivers/media/platform/rockchip/rkisp1
https://github.com/torvalds/linux/tree/master/drivers/media/platform/rockchip/rkisp1

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum, Peh Chang Wei Brandon,
Dillon Franke, Forest Fraser, Gaspar Garcia, Eric Gong, Hung T. Nguyen, Taresh K.
Sethi, Vishal Subbiah, Michael Backes, Giancarlo Pellegrino, and Dan Boneh. Fi-
delius: Protecting user secrets from compromised browsers. 2019 IEEE Symposium
on Security and Privacy (SP), pages 264-280, 2018.

Erhu Feng, X. Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu Zang,
and Haibo Chen. Scalable memory protection in the penglai enclave. In USENIX
Symposium on Operating Systems Design and Implementation, 2021.

Andreas Fitzek, Florian Achleitner, Johannes Winter, and Daniel M. Hein. The andix
research os — arm trustzone meets industrial control systems security. 2015 IEEE
13th International Conference on Industrial Informatics (INDIN), pages 88-93, 2015.

Balazs Gerofi, Yutaka Ishikawa, Rolf Riesen, Robert W. Wisniewski, Yoonho Park,
and Bryan S. Rosenburg. A multi-kernel survey for high-performance computing.
Proceedings of the 6th International Workshop on Runtime and Operating Systems
for Supercomputers, 2016.

GlobalPlatform. TEE Client API Specification, 2023.
Google. Widevine, 2024.

Nicholas Gordon and John R. Lange. Lifting and dropping vms to dynamically tran-
sition between time- and space-sharing for large-scale hpc systems. Proceedings of the
31st International Symposium on High-Performance Parallel and Distributed Com-
puting, 2022.

Nicholas Gordon, Kevin T. Pedretti, and John R. Lange. Porting the kitten lightweight
kernel operating system to risc-v. 2022 IEEE/ACM International Workshop on Run-
time and Operating Systems for Supercomputers (ROSS), pages 1-7, 2022.

Nicholas Gregory and Harini Kannan. Using undocumented hardware performance
counters to detect spectre-style attacks. In Conference on Applied Machine Learning
in Information Security (CAMLIS), 2021.

Liwei Guo and Felix Xiaozhu Lin. Minimum viable device drivers for arm trustzone.
Proceedings of the Seventeenth Furopean Conference on Computer Systems, 2021.

87

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to
speed with webassembly. Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2017.

Wei Huang, Vasily Rudchenko, He Shuang, Zhen Huang, and David Lie. Pearl-tee:
Supporting untrusted applications in trustzone. Proceedings of the 3rd Workshop on
System Software for Trusted Execution, 2018.

Guerney D. H. Hunt, Ram Pai, Michael V. Le, Hani Jamjoom, Sukadev Bhattiprolu,
Richard H. Boivie, Laurent Dufour, Brad Frey, Mohit Kapur, Kenneth A. Gold-
man, Ryan Grimm, Janani Janakirman, John M. Ludden, Paul Mackerras, Cathy
May, Elaine R. Palmer, Bharata Bhasker Rao, Lawrence Roy, William A. Starke,
Jeffrey Stuecheli, Enriquillo Valdez, and Wendel Voigt. Confidential computing for
openpower. Proceedings of the Sizteenth Furopean Conference on Computer Systems,
2021.

Intel. Intel Software Guard Extensions, 2023.

Intel. Intel Virtualization Technology for Directed I1/0, March 2023.
http://www.intel.com/content/dam/www/public/us/en/documents/
product-specifications/vt-directed-io-spec.pdf.

Blake Ives, Kathy L. Cossick, and Dennis A. Adams. Amazon go: Disrupting retail?
Journal of Information Technology Teaching Cases, 9:12 — 2, 2019.

Dong Ji, Qianying Zhang, Shijun Zhao, Zhiping Shi, and Yong Guan. Microtee:
Designing tee os based on the microkernel architecture. 2019 18th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Communica-
tions/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pages 26-33, 2019.

Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. An empirical analysis of
vulnerabilities in openssl and the linux kernel. In 2016 23rd Asia-Pacific Software
Engineering Conference (APSEC), pages 105-112, 2016.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A. Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: formal verification of an os
kernel. In Symposium on Operating Systems Principles, 2009.

88

http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual International Cryptology Conference, 1999.

Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. Set the configuration
for the heart of the os. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 4:1 — 27, 2020.

Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. A linux in unikernel
clothing. Proceedings of the Fifteenth European Conference on Computer Systems,
2020.

Argonne National Laboratories. Argonne national laboratories benchmarks repo.

Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Empirical analysis of the
relationship between cc and sloc in a large corpus of java methods and c¢ functions.
Journal of Software: FEvolution and Process, 28:589 — 618, 2016.

John Lange, Peter A. Dinda, Robert Dick, Friedrich Doku, Elena Fabian, Nick Gor-
don, Peizhi Liu, Michael Polinski, Madhav Suresh, Carson Surmeier, and Nick Wan-
ninger. A case for a user-centered distributed privacy backplane for the internet of
things. Technical report, Northwestern University, 2023.

John R. Lange, Nicholas Gordon, and Brian L. Gaines. Low overhead security isolation
using lightweight kernels and tees. 2021 SC Workshops Supplementary Proceedings
(SCWS), pages 4249, 2021.

Stefan Lankes, Simon Pickartz, and Jens Breitbart. HermitCore: a Unikernel for Ex-
treme Scale Computing. In Proceedings of the 6th International Workshop on Runtime
and Operating Systems for Supercomputers, 2016.

Michael Larabel. Linux to drop support for 15 year old, never-shipped intel ”carillo
ranch”, 2023.

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovi¢, and Dawn Xiaodong
Song. Keystone: an open framework for architecting trusted execution environments.
Proceedings of the Fifteenth Furopean Conference on Computer Systems, 2020.

Joshua LeVasseur and Volkmar Uhlig. A sledgehammer approach to reuse of legacy
device drivers. In EW 11, 2004.

89

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Congmiao Li and Jean-Luc Gaudiot. Detecting malicious attacks exploiting hard-
ware vulnerabilities using performance counters. 2019 IEEE 43rd Annual Computer
Software and Applications Conference (COMPSAC), 1:588-597, 2019.

Mengyuan Li, Yingian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. Ci-
pherleaks: Breaking constant-time cryptography on amd sev via the ciphertext side
channel. In USENIX Security Symposium, 2021.

Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, D. Eyers, Ridiger Kapitza,
Christof Fetzer, and Peter R. Pietzuch. Glamdring: Automatic application partition-
ing for intel sgx. In USENIX Annual Technical Conference, 2017.

Device drivers - the linux kernel documentation. https://www.kernel.org/doc/
html/latest/driver-api/driver-model/driver.html, June 2024.

Littlekernel. Github - littlekernel/lk, 2023.

Jiuxing Liu, Wei Huang, Biilent Abali, and Dhabaleswar Kumar Panda. High perfor-
mance vim-bypass i/o in virtual machines. In USENIX Annual Technical Conference,
General Track, 2006.

Linaro Ltd. Devicetree specifications, 2024.

John Madieu. Mastering Linux Device Driver Development: Write custom device
drivers to support computer peripherals in Linuz operating systems. Packt Publishing,
2021.

Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. Reverse engineering intel last-level cache complex addressing
using performance counters. In International Symposium on Recent Advances in In-
trusion Detection, 2015.

John D. McCalpin. Memory Bandwidth and Machine Balance in Current High Per-
formance Computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pages 19-25, December 1995.

Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi
Isozaki. Flicker: an execution infrastructure for tcb minimization. In European Con-
ference on Computer Systems, 2008.

90

https://www.kernel.org/doc/html/latest/driver-api/driver-model/driver.html
https://www.kernel.org/doc/html/latest/driver-api/driver-model/driver.html

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Arvind
Seshadri. How low can you go?: recommendations for hardware-supported minimal
tcb code execution. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2008.

Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Safe passage for pass-
words and other sensitive data. In Network and Distributed System Security Sympo-
sium, 2009.

Brian McGillion, Tanel Dettenborn, Thomas Nyman, and N. Asokan. Open-tee — an
open virtual trusted execution environment. 2015 IEEE Trustcom/BigDataSE/ISPA,
1:400-407, 2015.

Rebecca T. Mercuri and Peter G. Neumann. Security by obscurity. Commun. ACM,
46:160, 2003.

Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. Ppfl: privacy-preserving federated learning with trusted execution
environments. Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services, 2021.

James Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. Watz: A trusted
webassembly runtime environment with remote attestation for trustzone. 2022 IEEE
42nd International Conference on Distributed Computing Systems (ICDCS), pages
1177-1189, 2022.

Cong T. Nguyen, Yuris Mulya Saputra, Nguyen Van Huynh, Ngoc-Tan Nguyen,
Tran Viet Khoa, Bui Minh Tuan, Diep N. Nguyen, Dinh Thai Hoang, Thang Xuan Vu,
Eryk Dutkiewicz, Symeon Chatzinotas, and Bjorn E. Ottersten. A comprehensive sur-
vey of enabling and emerging technologies for social distancing—part i: Fundamentals
and enabling technologies. Ieee Access, 8:153479 — 153507, 2020.

National Institute of Standards and Technology. Post-processing audit tools and
techniques. Technical report, U.S. Department of Commerce, 1977.

A. Oliveira, José Martins, Jorge Cabral, Adriano Tavares, and Sandro Pinto. Tz- vir-
tio: Enabling standardized inter-partition communication in a trustzone-assisted hy-
pervisor. 2018 IEEFE 27th International Symposium on Industrial Electronics (ISIE),
pages 708-713, 2018.

91

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

OP-TEE. TLS support in OPTEE, 2023.

Oracle. Introduction to virtio. https://blogs.oracle.com/linux/post/
introduction-to-virtio, 2024.

Jiannan Ouyang, Brian Kocoloski, John R. Lange, and Kevin Pedretti. Achieving
Performance Isolation with Lightweight Co-Kernels. In Proceedings of the 24th Inter-
national Symposium on High-Performance Parallel and Distributed Computing, 2015.

Jiannan Ouyang, Brian Kocoloski, John R. Lange, and Kevin T. Pedretti. Achieving
performance isolation with lightweight co-kernels. Proceedings of the 24th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing, 2015.

European Parliament. General data protection regulation.

Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping trust in mod-
ern computers. In Springer Briefs in Computer Science, 2011.

Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven
Apel, Krzysztof Czarnecki, and Jesus Alejandro Padilla. A study of feature scattering
in the linux kernel. IEEE Transactions on Software Engineering, 47(1):146-164, 2021.

Kevin Pedretti. Kitten: A Lightweight Operating System for Ultrascale Supercom-
puters. Sandia Lab, 2011.

Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. Cuda leaks. ACM Trans-
actions on Embedded Computing Systems (TECS), 15:1 — 25, 2013.

Sandro Pinto and Nuno Santos. Demystifying arm trustzone. ACM Computing Sur-
veys (CSUR), 51:1 — 36, 2019.

PixLab. SOD - An Embedded, Modern Computer Vision and Machine Learning
Library, 2023.

Davide Quarta, Michele Ianni, Aravind Machiry, Yanick Fratantonio, Eric Gustafson,
Davide Balzarotti, Martina Lindorfer, Giovanni Vigna, and Christopher Kruegel.
Tarnhelm: Isolated, transparent & confidential execution of arbitrary code in arm’s
trustzone. Proceedings of the 2021 Research on offensive and defensive techniques in
the Context of Man At The End (MATE) Attacks, 2021.

92

https://blogs.oracle.com/linux/post/introduction-to-virtio
https://blogs.oracle.com/linux/post/introduction-to-virtio

[84]

[85]

[36]

[87]

83

[89]

[90]

[91]

[92]

[93]

Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox, Paul Eng-
land, Chris Fenner, Kinshuman Kinshumann, Jork Loéser, Dennis Mattoon, Magnus
Nystrom, David Robinson, Rob Spiger, Stefan Thom, and David Wooten. ftpm: A
software-only implementation of a tpm chip. In USENIX Security Symposium, 2016.

Rolf Riesen, Arthur B. Maccabe, Balazs Gerofi, David N. Lombard, Jack Lange,
Kevin T. Pedretti, Kurt B. Ferreira, Mike Lang, Pardo Keppel, Robert W. Wis-
niewski, Ron Brightwell, Todd Inglett, Yoonho Park, and Yutaka Ishikawa. What is
a lightweight kernel? Proceedings of the 5th International Workshop on Runtime and
Operating Systems for Supercomputers, 2015.

Rockchips. Rockchip RK3399 TRM, 2017. https://opensource.rock-chips.com/
images/e/ee/Rockchip_RK3399TRM_V1.4 Part1-20170408.pdf.

Rusty Russell. virtio: towards a de-facto standard for virtual i/o devices. ACM
SIGOPS Oper. Syst. Rev., 42:95-103, 2008.

Leonid Ryzhyk, Yanjin Zhu, and Gernot Heiser. The case for active device drivers.
In Asia Pacific Workshop on Systems, 2010.

Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using arm trust-
zone to build a trusted language runtime for mobile applications. Proceedings of the
19th international conference on Architectural support for programming languages and
operating systems, 2014.

Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde, Srdjan Capkun, and
Ronald Perez. Sok: Hardware-supported trusted execution environments. ArXiv,
abs/2205.12742, 2022.

Ioannis Sfyrakis and Thomas Gross. Uniguard: Protecting unikernels using intel sgx.
In 2018 IEEE International Conference on Cloud Engineering (IC2E), pages 99-105,
2018.

Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, and Yubin
Xia. Occlum: Secure and efficient multitasking inside a single enclave of intel sgx.
Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020.

Simon Shillaker and Peter R. Pietzuch. Faasm: Lightweight isolation for efficient
stateful serverless computing. In USENIX Annual Technical Conference, 2020.

93

https://opensource.rock-chips.com/images/e/ee/Rockchip_RK3399TRM_V1.4_Part1-20170408.pdf
https://opensource.rock-chips.com/images/e/ee/Rockchip_RK3399TRM_V1.4_Part1-20170408.pdf

[94]

[95]

[96]

[97]

[98]
[99]
[100]
[101]
[102]
[103]

[104]

[105]

[106]

Shweta Shinde, Dat Le Tien, Shruti Tople, and P. Saxena. Panoply: Low-tcb linux ap-
plications with sgx enclaves. In Network and Distributed System Security Symposium,
2017.

Junaid Shuja, Abdullah Bin Gani, Kashif Bilal, Atta ur Rehman Khan, Sajjad Ah-
mad Madani, Samee Ullah Khan, and Albert Y. Zomaya. A survey of mobile device
virtualization. ACM Computing Surveys (CSUR), 49:1 — 36, 2016.

SQLite Consortium. SQLite Home Page, 2024.

Gookwon Edward Suh and Srinivas Devadas. Physical unclonable functions for device
authentication and secret key generation. 2007 44th ACM/IEEE Design Automation
Conference, pages 9-14, 2007.

TPC. TPC-H Decision Support Benchmark, 2024.

TrustedFirmware. OP-TEE, 2023.

TrustedFirwmare. TrustedFirmware-A (TF-A), 2023.

TrustKernel. T6 - Secure OS and TEE, 2023.

Trustonic. Cyber security technology located at the deepest level of the device, 2023.
U-Boot. The U-Boot Documentation, 2023.

Volodymyr Shymanskyy. wasm3: A fast WebAssembly interpreter and the most
universal WASM runtime, 2024.

Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted execution
environments on gpus. In USENIX Symposium on Operating Systems Design and
Implementation, 2018.

Xueyang Wang and Jerry Backer. Sigdrop: Signature-based rop detection using hard-
ware performance counters. ArXiv, abs/1609.02667, 2016.

94

[107]

[108]

[109)]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Nico Weichbrodt, Anil Kurmus, Peter R. Pietzuch, and Ridiger Kapitza. Asyncshock:
Exploiting synchronisation bugs in intel sgx enclaves. In Furopean Symposium on
Research in Computer Security, 2016.

Samuel Weiser and Mario Werner. Sgxio: Generic trusted i/o path for intel sgx.
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, 2017.

Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Stefan Mangard,
and Ahmad-Reza Sadeghi. Timber-v: Tag-isolated memory bringing fine-grained en-
claves to risc-v. Proceedings 2019 Network and Distributed System Security Sympo-
sium, 2019.

David Wheeler. SLOCCOUNT.

Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert M. Nor-
ton, and Michael Roe. The cheri capability model: Revisiting risc in an age of risk.
2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),
pages 457-468, 2014.

Simon Xue and Daniel Kurtz. rockchip-iommu.c driver. https://github.com/
torvalds/linux/blob/master/drivers/iommu/rockchip-iommu.c, 2024.

Peterson Yuhala, Pascal Felber, Valerio Schiavoni, and Alain Tchana. Plinius: Se-
cure and persistent machine learning model training. 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 52-62,
2021.

Irene Zhang, Jing Liu, Amanda Austin, Michael L. Roberts, and Anirudh Badam. I'm
not dead yet!: The role of the operating system in a kernel-bypass era. Proceedings
of the Workshop on Hot Topics in Operating Systems, 2019.

Zongwei Zhou, Miao Yu, and Virgil D. Gligor. Dancing with giants: Wimpy kernels
for on-demand isolated i/o. 2014 IEEE Symposium on Security and Privacy, pages
308-323, 2014.

Jianping Zhu, Rui Hou, Xiaofeng Wang, Wenhao Wang, Jiangfeng Cao, Boyan Zhao,
Zhongpu Wang, Yuhui Zhang, Jiameng Ying, Lixin Zhang, and Dan Meng. Enabling

95

https://github.com/torvalds/linux/blob/master/drivers/iommu/rockchip-iommu.c
https://github.com/torvalds/linux/blob/master/drivers/iommu/rockchip-iommu.c

rack-scale confidential computing using heterogeneous trusted execution environment.
2020 IEEFE Symposium on Security and Privacy (SP), pages 1450-1465, 2020.

[117] Marc Zyngier. Arm gicv3 linux kernel driver source code, June 2024.

96

	Title Page
	Committee Membership Page
	Abstract
	Table of Contents
	List of Tables
	1. LWKs are comparable to existing TEE OSes in terms of code complexity.
	2. TCB measurements for trusted kernel candidates.
	3. Paravirtualizing the platform drivers results in an average reduction of ˜57% per device, or an overall LOC reduction of 53%.

	List of Figures
	1. Processing data at the sensor and separated management and data access planes are key components of our target class of applications.
	2. Our threat model ensures that secure partition software cannot be tampered with by the owner.
	3. The GIC's hierarchical structure means the two partitions may compete for control of the GIC distributor's configuration. Diagram from ARM arm-gic
	4. The interkernel provides a generic message-passing system to implement arbitrary services on top.
	5. KaTZe provides socket operations by delegating them to the Linux kernel.
	6. TrustZone memory protection imposes no overhead in the STREAM benchmarks.
	7. TrustZone memory protection imposes no overhead in the RandomAccess (GUPS) benchmarks.
	8. KaTZe supports a typical POSIX ABI ``LAMP stack,'' using split drivers for sensors and delegated sockets for networking.
	9. KaTZe benefits from the same application optimizations that Linux does for SQLite3's speedtest1 benchmark.
	10. KaTZe's socket implementation provides reasonable networking performance both in connection latency and throughput with full delegation to Linux.
	11. In our proposed architecture sensor data is securely sent to the trusted application.
	12. Re-using drivers can be achieved with the ``sledgehammer'' approach that hosts a complete VM, here denoted ``DD/OS''. Figure from LeVasseur2004ASA.
	13. Block model of a modern ISP, the ARM Mali-C55, showing considerable internal complexity. Image from ARM arm-mali-isp
	14. The logical structure of the on-board ISP is several sub-devices.
	15. Our driver model configures the ISP with a userspace library which is effected by kernel drivers to hardware, without device abstraction.
	16. SOD achieves a recognition speed of 27 frames per second on KaTZe compared to Linux's 126.
	17. Decomposing a device reveals some have heterogeneous security properties which permit secure shunting of functionality out of the TEE.
	18. Our proposed driver model spans both the untrusted and trusted OS, delegating platform management to the untrusted partition.
	19. The functionality of a single ``composite'' paravirtualized device is provided by several discrete hardware devices.
	20. Our paravirtual framework organizes the system's devices into three perspectives, or ``layers'' of increasing granularity or abstractness.
	21. Paravirtual drivers expose a ``key'' to the untrusted partition, which various underlying platforms can fit to provide services to the TEE.
	22. If input A linked to output B are trusted and a midpoint C cannot be configured to output to an adversary, then C's data is trusted even when control is not.
	23. By changing only the selected Linux driver, our implementation re-uses valid Linux configurations to enable a trusted paravirtual device.
	24. The HTU21D paravirtualized driver achieves a reasonable fraction, 0.626x the performance of a native driver equivalent.

	Preface
	1.0 Introduction
	1.1 Motivation: Autonomous/Smart Shopping
	1.2 Thesis
	1.3 Research Contributions and Insights
	1.3.1 Trusted Execution Environment (TEE)
	1.3.2 Secure Peripheral Device I/O
	1.3.3 Driver Paravirtualization

	2.0 Threat Model
	2.1 Attestation

	3.0 LWKs as Secure OSes
	3.1 Background and Related Work
	3.1.1 Trusted Execution Environment Models
	3.1.2 System Software Assumptions and Application APIs
	3.1.2.1 Microkernels and Unikernels

	3.1.3 TEE OSes and Software Runtimes
	3.1.3.1 Runtime Systems
	3.1.3.2 Service-like OSes
	3.1.3.3 Formal Verification
	3.1.3.4 Existing Mainstream Kernels
	3.1.3.5 Commercial OSes

	3.1.4 Lightweight Kernels

	3.2 LWKs as TEE OSes
	3.2.1 Hardware Assumptions
	3.2.2 System Co-existence
	3.2.3 Partition Boundaries and Messaging: the Interkernel

	3.3 KaTZe: The Kitten LWK TEE OS
	3.3.1 Resource efficiency and TCB simplicity
	3.3.2 Secure Interrupts
	3.3.3 The Interkernel Channel
	3.3.3.1 Sockets

	3.4 Evaluation
	3.4.1 TrustZone Performance
	3.4.2 Application Support and Environment Familiarity
	3.4.2.1 Mongoose Webserver
	3.4.2.2 SQLite3 Database
	3.4.2.3 SOD
	3.4.2.4 Mmap-based IPC
	3.4.2.5 WebAssembly Runtime: wasm3

	3.4.3 Prototype Application and Benchmarks
	3.4.3.1 SQLite3 speedtest1
	3.4.3.2 Mongoose performance: sockets

	3.4.4 Conclusion

	4.0 Secure I/O Stack with Lightweight Kernels
	4.1 Background and Related Work
	4.1.1 Protecting the data
	4.1.2 Protecting the channel

	4.2 Trusting I/O: Secure Driver Stacks
	4.2.1 Devices and internal complexity

	4.3 Simplifying the Driver Stack
	4.3.1 Driver Complexity: Video4linux2 and the Media Controller Framework

	4.4 KaTZe Implementation of Trusted I/O Devices
	4.4.1 Secure Device Access
	4.4.2 Underlying System Bus Architecture
	4.4.3 HTU21D Sensor: I2C Control and Data
	4.4.4 IMX214 Camera: I2C Control, D-PHY Data
	4.4.5 SoC Device Complexity and Documentation: RK3399 ISP
	4.4.6 Limitation: Undocumented Security Features
	4.4.7 Userland Camera Interface

	4.5 Evaluation
	4.5.1 ISP TrustZone Overhead
	4.5.2 Image Recognition on Captured Frames
	4.5.3 Conclusion

	5.0 Paravirtual Device Drivers
	5.1 Security Sensitivity of Devices
	5.2 Background and Related Work
	5.3 Split Drivers to Reduce Trusted TCB
	5.3.1 The ``Composite'' Devices of the Paravirtual Framework
	5.3.2 Containing Platform Complexity

	5.4 Implementation of Split Drivers in KaTZe
	5.4.1 Privacy and Security Considerations
	5.4.2 Re-Using Existing Linux Configurations
	5.4.3 Device Limitations: Memory Access Granularity

	5.5 Evaluation
	5.5.1 HTU21D: Paravirtual vs Ported
	5.5.2 TCB Reduction
	5.5.3 Conclusion

	6.0 Discussion
	6.1 Support for Attestation Mechanisms
	6.2 Conclusion and Further Work

	Bibliography

